热带几何中的Lefschetz(1,1)定理

Pub Date : 2017-11-21 DOI:10.46298/epiga.2018.volume2.4126
Philipp Jell, Johannes Rau, Kristin M. Shaw
{"title":"热带几何中的Lefschetz(1,1)定理","authors":"Philipp Jell, Johannes Rau, Kristin M. Shaw","doi":"10.46298/epiga.2018.volume2.4126","DOIUrl":null,"url":null,"abstract":"For a tropical manifold of dimension n we show that the tropical homology\nclasses of degree (n-1, n-1) which arise as fundamental classes of tropical\ncycles are precisely those in the kernel of the eigenwave map. To prove this we\nestablish a tropical version of the Lefschetz (1, 1)-theorem for rational\npolyhedral spaces that relates tropical line bundles to the kernel of the wave\nhomomorphism on cohomology. Our result for tropical manifolds then follows by\ncombining this with Poincar\\'e duality for integral tropical homology.\n\n Comment: 27 pages, 6 figures, published version","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2017-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"25","resultStr":"{\"title\":\"Lefschetz (1,1)-theorem in tropical geometry\",\"authors\":\"Philipp Jell, Johannes Rau, Kristin M. Shaw\",\"doi\":\"10.46298/epiga.2018.volume2.4126\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For a tropical manifold of dimension n we show that the tropical homology\\nclasses of degree (n-1, n-1) which arise as fundamental classes of tropical\\ncycles are precisely those in the kernel of the eigenwave map. To prove this we\\nestablish a tropical version of the Lefschetz (1, 1)-theorem for rational\\npolyhedral spaces that relates tropical line bundles to the kernel of the wave\\nhomomorphism on cohomology. Our result for tropical manifolds then follows by\\ncombining this with Poincar\\\\'e duality for integral tropical homology.\\n\\n Comment: 27 pages, 6 figures, published version\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2017-11-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"25\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.46298/epiga.2018.volume2.4126\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46298/epiga.2018.volume2.4126","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 25

摘要

对于维数为n的热带流形,我们证明了作为热带环流基本类的(n-1, n-1)次的热带同调类恰好是本征波图核中的那些。为了证明这一点,我们建立了有理多面体空间的Lefschetz(1,1)定理的热带版本,将热带线束与上同调上的波同态核联系起来。结合积分热带同调的庞加莱对偶,我们得到了热带流形的结果。评论:27页,6个数字,出版版
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Lefschetz (1,1)-theorem in tropical geometry
For a tropical manifold of dimension n we show that the tropical homology classes of degree (n-1, n-1) which arise as fundamental classes of tropical cycles are precisely those in the kernel of the eigenwave map. To prove this we establish a tropical version of the Lefschetz (1, 1)-theorem for rational polyhedral spaces that relates tropical line bundles to the kernel of the wave homomorphism on cohomology. Our result for tropical manifolds then follows by combining this with Poincar\'e duality for integral tropical homology. Comment: 27 pages, 6 figures, published version
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信