{"title":"再来看看谱胶合定理","authors":"Dario Beraldo","doi":"10.46298/epiga.2020.volume4.5940","DOIUrl":null,"url":null,"abstract":"We strengthen the gluing theorem occurring on the spectral side of the\ngeometric Langlands conjecture. While the latter embeds $IndCoh_N(LS_G)$ into a\ncategory glued out of 'Fourier coefficients' parametrized by standard\nparabolics, our refinement explicitly identifies the essential image of such\nembedding.\n","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2018-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"The spectral gluing theorem revisited\",\"authors\":\"Dario Beraldo\",\"doi\":\"10.46298/epiga.2020.volume4.5940\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We strengthen the gluing theorem occurring on the spectral side of the\\ngeometric Langlands conjecture. While the latter embeds $IndCoh_N(LS_G)$ into a\\ncategory glued out of 'Fourier coefficients' parametrized by standard\\nparabolics, our refinement explicitly identifies the essential image of such\\nembedding.\\n\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2018-04-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.46298/epiga.2020.volume4.5940\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46298/epiga.2020.volume4.5940","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
We strengthen the gluing theorem occurring on the spectral side of the
geometric Langlands conjecture. While the latter embeds $IndCoh_N(LS_G)$ into a
category glued out of 'Fourier coefficients' parametrized by standard
parabolics, our refinement explicitly identifies the essential image of such
embedding.