gaduchon astheno-Kahler流形上有限向量束的表征

Pub Date : 2017-11-01 DOI:10.46298/epiga.2018.volume2.4209
I. Biswas, Vamsi Pingali
{"title":"gaduchon astheno-Kahler流形上有限向量束的表征","authors":"I. Biswas, Vamsi Pingali","doi":"10.46298/epiga.2018.volume2.4209","DOIUrl":null,"url":null,"abstract":"A vector bundle E on a projective variety X is called finite if it satisfies\na nontrivial polynomial equation with integral coefficients. A theorem of Nori\nimplies that E is finite if and only if the pullback of E to some finite etale\nGalois covering of X is trivial. We prove the same statement when X is a\ncompact complex manifold admitting a Gauduchon astheno-Kahler metric.\n","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2017-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"A characterization of finite vector bundles on Gauduchon astheno-Kahler\\n manifolds\",\"authors\":\"I. Biswas, Vamsi Pingali\",\"doi\":\"10.46298/epiga.2018.volume2.4209\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A vector bundle E on a projective variety X is called finite if it satisfies\\na nontrivial polynomial equation with integral coefficients. A theorem of Nori\\nimplies that E is finite if and only if the pullback of E to some finite etale\\nGalois covering of X is trivial. We prove the same statement when X is a\\ncompact complex manifold admitting a Gauduchon astheno-Kahler metric.\\n\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2017-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.46298/epiga.2018.volume2.4209\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46298/epiga.2018.volume2.4209","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

射影变量X上的向量束E如果满足一个具有积分系数的非平凡多项式方程,则称为有限。nori的一个定理表明E是有限的当且仅当E对X的有限的等值覆盖的回拉是平凡的。当X是紧复流形时,我们证明了同样的命题,该流形承认一个高杜雄astheno-Kahler度量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
A characterization of finite vector bundles on Gauduchon astheno-Kahler manifolds
A vector bundle E on a projective variety X is called finite if it satisfies a nontrivial polynomial equation with integral coefficients. A theorem of Nori implies that E is finite if and only if the pullback of E to some finite etale Galois covering of X is trivial. We prove the same statement when X is a compact complex manifold admitting a Gauduchon astheno-Kahler metric.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信