{"title":"A characterization of finite vector bundles on Gauduchon astheno-Kahler\n manifolds","authors":"I. Biswas, Vamsi Pingali","doi":"10.46298/epiga.2018.volume2.4209","DOIUrl":null,"url":null,"abstract":"A vector bundle E on a projective variety X is called finite if it satisfies\na nontrivial polynomial equation with integral coefficients. A theorem of Nori\nimplies that E is finite if and only if the pullback of E to some finite etale\nGalois covering of X is trivial. We prove the same statement when X is a\ncompact complex manifold admitting a Gauduchon astheno-Kahler metric.\n","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2017-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46298/epiga.2018.volume2.4209","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
A vector bundle E on a projective variety X is called finite if it satisfies
a nontrivial polynomial equation with integral coefficients. A theorem of Nori
implies that E is finite if and only if the pullback of E to some finite etale
Galois covering of X is trivial. We prove the same statement when X is a
compact complex manifold admitting a Gauduchon astheno-Kahler metric.