Nano-Structures & Nano-Objects最新文献

筛选
英文 中文
Review on the applicability of nanostructured flame retardants for preventing fire in livestock and crop fields 纳米结构阻燃剂在防止牲畜和农作物田间火灾方面的适用性综述
IF 5.45
Nano-Structures & Nano-Objects Pub Date : 2024-10-17 DOI: 10.1016/j.nanoso.2024.101379
Pallvi Verma , Diksha Thakur , Shailesh Kumar Singh , Manish Bakshi , Anis Ahmad Mirza , Sanjay Singh
{"title":"Review on the applicability of nanostructured flame retardants for preventing fire in livestock and crop fields","authors":"Pallvi Verma ,&nbsp;Diksha Thakur ,&nbsp;Shailesh Kumar Singh ,&nbsp;Manish Bakshi ,&nbsp;Anis Ahmad Mirza ,&nbsp;Sanjay Singh","doi":"10.1016/j.nanoso.2024.101379","DOIUrl":"10.1016/j.nanoso.2024.101379","url":null,"abstract":"<div><div>Flame retardants are used for fire prevention in different sectors, including industries, houses, or materials sensitive to combustion. Fire is considered the cause of natural and anthropogenic activities, and responsible for severe loss of life and economy. It also results in environmental pollution by producing a huge amount of smoke, suspended particulate matter, and other pollutants. However, many flame retardants, <em>viz.</em> halogenated flame retardants, organophosphate, oxides, hydroxides, melamine derivates, etc., can be conventionally used in controlling fire in agriculture and livestock. Though these retardants have good efficacy in controlling fire the impact on the environment and the loading value of these flame retardants is a major challenge. The nanostructured flame retardants (NFR) have greater potential to act in a multidimensional approach including radical scavenging, char formation, cooling effect, dilution effect, synergism, etc. NFRs have a high specific area, high electrical and thermal conductivity, the ability to develop insulating layers through nanomaterials-polymer interaction, and conjugate crystalline-amorphous nature. These attributes ensure the potential application of nanostructured flame retardants in controlling fire in crop fields and livestock. Some promising NFRs are nanoclays, carbon nanotubes (CNTs), polyhedral oligosilsesquioxane (POSS), graphene-like 2D nanomaterials, and polymer-clay nanocomposites. These NFRs can be used in conjugation with conventional flame retardants to ensure the effectiveness of flame retardancy.</div></div>","PeriodicalId":397,"journal":{"name":"Nano-Structures & Nano-Objects","volume":"40 ","pages":"Article 101379"},"PeriodicalIF":5.45,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142531469","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Production of a versatile PMMA/PEO-CuO-In2O3 nanocomposite with its characterization, cold plasma treatment, and applications for flexible emission filter devices and smart moisture 多功能 PMMA/PEO-CuO-In2O3 纳米复合材料的制备、表征、冷等离子处理以及在柔性排放过滤装置和智能湿气中的应用
IF 5.45
Nano-Structures & Nano-Objects Pub Date : 2024-10-17 DOI: 10.1016/j.nanoso.2024.101382
Shamil R. Sahib, Bahaa H. Rabee
{"title":"Production of a versatile PMMA/PEO-CuO-In2O3 nanocomposite with its characterization, cold plasma treatment, and applications for flexible emission filter devices and smart moisture","authors":"Shamil R. Sahib,&nbsp;Bahaa H. Rabee","doi":"10.1016/j.nanoso.2024.101382","DOIUrl":"10.1016/j.nanoso.2024.101382","url":null,"abstract":"<div><div>In this study, we synthesized versatile, flexible films with interesting optical and moisture properties. We blended poly (methyl methacrylate) (PMMA) and polyethylene oxide (PEO) and incorporated copper oxide (CuO) and indium oxide (In<sub>2</sub>O<sub>3</sub>) nanoparticles within the blend. We have investigated the optical properties. As the amount of CuO+In<sub>2</sub>O<sub>3</sub> nanoparticles increases, the extinction coefficient and Urbach energy rise while the indirect band gap falls. The luminescence spectroscopy showed very narrow and interesting peaks, indicating that it is suitable for emission filters. We analyzed the surface morphology using FE-SEM and a photomicrograph. We also investigate the frequency dependence of AC electrical conductivity, dielectric constant, and dielectric loss. At a frequency of less than 3 MHz, AC conductivity is very low, then increases to reach 7.6E-8, 1.3E-7, 1.6E-7, 1.7E-7, and 2.5E-7 for the pure blend, 1.5, 3, 4.5, and 6 nanoparticle concentrations, respectively. We used a DC plasma sputtering device with an aluminium target to treat the nanocomposites with argon plasma (for 7 minutes). We characterized the optical and surface properties of the samples both before and after the plasma treatment. Despite the short treatment time, the plasma effect was evident only on the nanocomposites containing nanoparticles. It lowered the energy gap for the indirect transition by 0.35, 0.04, and 0.46 eV in films with 3, 4.5, and 6 wt% of CuO+In<sub>2</sub>O<sub>3</sub> nanoparticles, respectively. The nanocomposites wrap around themselves when exposed to moisture, suggesting their potential applications as moisture sensors or indicators, self-wrapping materials, self-deploying or controlled release structures, or smart polymer coverings.</div></div>","PeriodicalId":397,"journal":{"name":"Nano-Structures & Nano-Objects","volume":"40 ","pages":"Article 101382"},"PeriodicalIF":5.45,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142531470","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A novel natural reducing agent for the preparation of cerium oxide nanoparticles based on the saffron by-product: Characterization, antioxidant and antibacterial activity for nutritional applications 一种基于藏红花副产品制备氧化铈纳米粒子的新型天然还原剂:营养应用中的表征、抗氧化和抗菌活性
IF 5.45
Nano-Structures & Nano-Objects Pub Date : 2024-10-13 DOI: 10.1016/j.nanoso.2024.101381
Zineb khadfy , Rachid Mamouni , Si Mohamed Jadouali , Hajar Atifi , Nabil Saffaj , Agnes Chartier , Reine Nehme , Kaoutar Boussif , Fouad Achemchem
{"title":"A novel natural reducing agent for the preparation of cerium oxide nanoparticles based on the saffron by-product: Characterization, antioxidant and antibacterial activity for nutritional applications","authors":"Zineb khadfy ,&nbsp;Rachid Mamouni ,&nbsp;Si Mohamed Jadouali ,&nbsp;Hajar Atifi ,&nbsp;Nabil Saffaj ,&nbsp;Agnes Chartier ,&nbsp;Reine Nehme ,&nbsp;Kaoutar Boussif ,&nbsp;Fouad Achemchem","doi":"10.1016/j.nanoso.2024.101381","DOIUrl":"10.1016/j.nanoso.2024.101381","url":null,"abstract":"<div><div>The study concerns the valorization of Moroccan saffron by-products in the synthesis of metallic oxide nanoparticles. Cerium oxide nanoparticles (CeO<sub>2</sub> NPs) were synthesized in an environmentally friendly process using an aqueous extract of saffron by-products. The characterization of the CeO<sub>2</sub> NPs and the investigation of their scavenging activity of free radicals using 2-diphenyl-1-picrylhydrazyl (DPPH) method, as well as their antibacterial activity with regard to their application in food products have been studied. The Fourier-transformed infrared spectroscopy (FTIR) analysis confirmed that the active compounds of saffron pruned flowers extracts were involved in the reduction and stabilization of CeO<sub>2</sub> NPs. Scanning electron microscopy (SEM), and X-ray diffraction (XRD) analysis revealed the homogeneous distribution and the crystalline form of CeO<sub>2</sub> NPs, respectively. Moreover, the green CeO<sub>2</sub> NPs showed high inhibition percentages (72 %) and strong growth inhibition of the majority of pathogenic bacteria tested, with inhibition zone diameters ranging from 2 to 5 mm.</div></div>","PeriodicalId":397,"journal":{"name":"Nano-Structures & Nano-Objects","volume":"40 ","pages":"Article 101381"},"PeriodicalIF":5.45,"publicationDate":"2024-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142432410","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Microwave-assisted synthesis of copper oxide nanoparticles using an Andrographis paniculata leaf extract: Characterization and multifunctional biological activities 利用穿心莲叶提取物微波辅助合成氧化铜纳米颗粒:表征和多功能生物活性
IF 5.45
Nano-Structures & Nano-Objects Pub Date : 2024-10-11 DOI: 10.1016/j.nanoso.2024.101376
Mahalakshmi Devaraji, Punniyakoti V Thanikachalam, Rajalakshmi AS, Rohan S, Bhagyalakshmi J
{"title":"Microwave-assisted synthesis of copper oxide nanoparticles using an Andrographis paniculata leaf extract: Characterization and multifunctional biological activities","authors":"Mahalakshmi Devaraji,&nbsp;Punniyakoti V Thanikachalam,&nbsp;Rajalakshmi AS,&nbsp;Rohan S,&nbsp;Bhagyalakshmi J","doi":"10.1016/j.nanoso.2024.101376","DOIUrl":"10.1016/j.nanoso.2024.101376","url":null,"abstract":"<div><div>This research delves into the environmentally friendly production of copper nanoparticles (CuNPs) using <em>Andrographis paniculata</em> leaf extract (Ap-CuNPs) and their thorough assessment for possible biological purposes. CuNPs were synthesised through a microwave-assisted method using <em>Andrographis paniculata</em> leaf extract. Characterization techniques included ultraviolet spectroscopy (UV<img>Vis), FT-IR spectroscopy, SEM, EDAX, XRD, particle size analysis, and zeta potential measurement. Biological activities were assessed through antioxidant (DPPH and H<sub>2</sub>O<sub>2</sub> assays), anti-inflammatory (BSA and egg albumin denaturation assays), antimicrobial, cytotoxic (brine shrimp lethality and MTT assays), and wound healing (scratch assay) tests. Characterization confirmed the formation of Ap-CuNPs with a plasmon resonance peak at 550 nm, the presence of phytochemical capping agents, and high crystallinity. The average particle size was 69.1 nm, with a zeta potential of −12.1 mV. Ap-CuNPs exhibited significant antioxidant activity, with 88.62 % inhibition in the DPPH assay, in the H<sub>2</sub>O<sub>2</sub> assay, which assesses the capacity to scavenge hydrogen peroxide, the Ap-CuNPs achieved 86.3 % inhibition at the same concentration. and anti-inflammatory activity, with 80 % inhibition in the BSA assay. Antimicrobial tests revealed strong activity against gram-negative bacteria in the 22 mm inhibition zone for <em>Pseudomonas sp</em>., for <em>S. aureus</em>, the inhibition zones were 9 mm. Cytotoxicity assessments revealed minimal effects at low concentrations, with 200 μg/ml identified as the optimal dose for wound healing. In vitro wound scratch assays demonstrated enhanced fibroblast migration and wound closure at this concentration.</div></div>","PeriodicalId":397,"journal":{"name":"Nano-Structures & Nano-Objects","volume":"40 ","pages":"Article 101376"},"PeriodicalIF":5.45,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142416238","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Evaluation of self-assembling properties of paclitaxel-biotin conjugates 评估紫杉醇生物素共轭物的自组装特性
IF 5.45
Nano-Structures & Nano-Objects Pub Date : 2024-10-11 DOI: 10.1016/j.nanoso.2024.101375
Dmitry V. Beigulenko , Anna Yu. Belyaeva , Ekaterina S. Kazakova , Maria M. Antonova , Aleksander S. Peregudov , Aleksey A. Nikitin , Tatyana S. Kovshova , Yulia V. Ermolenko , Konstantin A. Kochetkov
{"title":"Evaluation of self-assembling properties of paclitaxel-biotin conjugates","authors":"Dmitry V. Beigulenko ,&nbsp;Anna Yu. Belyaeva ,&nbsp;Ekaterina S. Kazakova ,&nbsp;Maria M. Antonova ,&nbsp;Aleksander S. Peregudov ,&nbsp;Aleksey A. Nikitin ,&nbsp;Tatyana S. Kovshova ,&nbsp;Yulia V. Ermolenko ,&nbsp;Konstantin A. Kochetkov","doi":"10.1016/j.nanoso.2024.101375","DOIUrl":"10.1016/j.nanoso.2024.101375","url":null,"abstract":"<div><div>Among many approaches to the creation of targeted chemotherapeutic agents, one relies on the attachment of biotin to the drug molecule. The prospect of such hybrid compounds has been demonstrated by the example of biotinylated taxane derivatives, in particular paclitaxel, which is widely used in clinical practice. However, the ability of paclitaxel-biotin conjugates to form self-assembled nanocomposites stable in aqueous media has not been revealed yet. Such a promising drug formulation would avoid the use of solubilizers often applied in conventional paclitaxel dosage forms and lead to side effects. In the present study the synthesis of paclitaxel-biotin conjugates differing in spacer chain length and hydrophobicity is described. It has been established that direct biotinylation of paclitaxel allows the resulting compound to form spherical nanoparticles. At the same time, the introduction of a hydrophilic spacer into the conjugate did not favor its ability to self-organize into such structures. It was demonstrated that the direct biotin-paclitaxel conjugate assembles into narrow-dispersed nanoparticles, which also have an optimal size (120–130 nm) for such drug delivery systems. Moreover, in the presence of non-toxic polyvinyl alcohol the nanoparticles were stable during storage. Taking into account also the ease of preparation, all these results make paclitaxel-biotin conjugate nanoparticles promising dosage forms based on paclitaxel derivatives.</div></div>","PeriodicalId":397,"journal":{"name":"Nano-Structures & Nano-Objects","volume":"40 ","pages":"Article 101375"},"PeriodicalIF":5.45,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142416239","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Predictive models for properties of hybrid blended modified sustainable concrete incorporating nano-silica, basalt fibers, and recycled aggregates: Application of advanced artificial intelligence techniques 纳米二氧化硅、玄武岩纤维和再生骨料混合改性可持续混凝土性能预测模型:先进人工智能技术的应用
IF 5.45
Nano-Structures & Nano-Objects Pub Date : 2024-10-10 DOI: 10.1016/j.nanoso.2024.101373
Boskey V. Bahoria , Prashant B. Pande , Sagar W. Dhengare , Jayant M. Raut , Rajesh M. Bhagat , Nilesh M. Shelke , Satyajit S. Uparkar , Vikrant S. Vairagade
{"title":"Predictive models for properties of hybrid blended modified sustainable concrete incorporating nano-silica, basalt fibers, and recycled aggregates: Application of advanced artificial intelligence techniques","authors":"Boskey V. Bahoria ,&nbsp;Prashant B. Pande ,&nbsp;Sagar W. Dhengare ,&nbsp;Jayant M. Raut ,&nbsp;Rajesh M. Bhagat ,&nbsp;Nilesh M. Shelke ,&nbsp;Satyajit S. Uparkar ,&nbsp;Vikrant S. Vairagade","doi":"10.1016/j.nanoso.2024.101373","DOIUrl":"10.1016/j.nanoso.2024.101373","url":null,"abstract":"<div><div>The main objective of this work is to improve the compressive strength of concrete, specially in sustainable construction is to develop more precise predictive modeling techniques. The compressive strength prediction of basalt fiber reinforced concrete filled with nano-silica and recycled aggregates can be done using a hybrid deep learning model suggesting the use of the combination of Convolutional Neural Networks and Long Short-Term Memory networks. The CNN captures microstructural features from SEM images, while the LSTM models temporal dependencies from sequential curing data samples. To enhance the prediction accuracy, PCA was performed on feature dimensionality reduction and GA optimized hyperparameters both for the model as well as the concrete mix design for improved strength with cost effectiveness. With an R² value of 0.92–0.95, the performance results of the presented model came out better than the baseline models, as well as reducing the MAE by 20 %. Besides, there existed a 5–8 % better compressive strength in GA-optimized mix designs. Robustness comes into play with the model that shows steady strength predictions, regardless of conditions of curing under multiple conditions and at different material composition levels. Furthermore, the reutilization of recycled aggregates and nano-silica gives a real environmental benefit as less waste is produced but the material performance is maximized. This kind of outcome indicates how the proposed model can be practically applied in optimizing concrete design in terms of strength and sustainability features, thus providing an accessible instrument for decision-making in the construction field. It is an effective tool to improve the performance of concrete while minimizing environmental and material wastes.</div></div>","PeriodicalId":397,"journal":{"name":"Nano-Structures & Nano-Objects","volume":"40 ","pages":"Article 101373"},"PeriodicalIF":5.45,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142416374","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Functionalized conducting polymers in photocatalysis and opportunities for artificial intelligence applications 光催化中的功能化导电聚合物与人工智能应用机遇
IF 5.45
Nano-Structures & Nano-Objects Pub Date : 2024-10-10 DOI: 10.1016/j.nanoso.2024.101371
Hisham Kazim , Moin Sabri , Amani Al-Othman , Muhammad Tawalbeh
{"title":"Functionalized conducting polymers in photocatalysis and opportunities for artificial intelligence applications","authors":"Hisham Kazim ,&nbsp;Moin Sabri ,&nbsp;Amani Al-Othman ,&nbsp;Muhammad Tawalbeh","doi":"10.1016/j.nanoso.2024.101371","DOIUrl":"10.1016/j.nanoso.2024.101371","url":null,"abstract":"<div><div>Water systems are being polluted by emerging contaminants at a staggering rate of 500 million tons annually. Various techniques have approached the treatment of pollutants, with photocatalysis being a viable method. Current research delved into the functionalization and nanohybridization of conducting polymers through photocatalysis in the degradation of dyes, heavy metals, and other pollutants. This review investigated the recent advancements in using functionalized conducting polymers and their composites in removing contaminants and highlights their various environmental benefits. Conducting polymers integrate dopants and heterojunctions to optimize the performance, which can, in turn, reduce wastewater pollution. Conducting polymers play a role in hydrogen production and carbon dioxide (CO<sub>2</sub>) reduction. This review presented the role of artificial intelligence models in the optimization and prediction of degradation rates in photocatalytic processes. This review concludes that amongst the models reviewed, artificial neural networks and genetic algorithms appeared to achieve the most accurate results with an R-squared and error value of 0.998 and 1.83×10<sup>−4</sup>, respectively. Despite the progress achieved in this direction, various issues pertaining to the generalization of the experimental data to a larger scale persist. This exposes the challenges in designing well-optimized photocatalytic-membrane systems.</div></div>","PeriodicalId":397,"journal":{"name":"Nano-Structures & Nano-Objects","volume":"40 ","pages":"Article 101371"},"PeriodicalIF":5.45,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142416373","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effects of prescribed surface temperature and heat flux with electrical conductivity via microbial chemotaxis to enhance nanoparticle 通过微生物趋化作用提高纳米粒子导电性的表面温度和热流量效应
IF 5.45
Nano-Structures & Nano-Objects Pub Date : 2024-10-10 DOI: 10.1016/j.nanoso.2024.101374
Nahid Fatima , Aaqib Majeed , Nouman Ijaz
{"title":"Effects of prescribed surface temperature and heat flux with electrical conductivity via microbial chemotaxis to enhance nanoparticle","authors":"Nahid Fatima ,&nbsp;Aaqib Majeed ,&nbsp;Nouman Ijaz","doi":"10.1016/j.nanoso.2024.101374","DOIUrl":"10.1016/j.nanoso.2024.101374","url":null,"abstract":"<div><div>The purpose of the current investigations in to explore the three-dimensional magnetohydrodynamic (MHD) Oldroyd-B nanofluid flow over an exponential stretchable surface with variable thermal conductivity. Impact of thermal radiation and gyrotactic motile organism also incorporated in the present study. A fluid that has tiny particles, also referred to as nanoparticles, scattered throughout a base fluid is called a nanofluid. These nanoparticles can be formed from metals, oxides, carbon-based compounds, or other nanomaterials, and their usual sizes range from 1 to 100 nanometers. Water, oil, ethylene glycol, or other common liquids can be used as the foundation fluid. Because of their improved physical qualities, greater heat transfer, and thermal conductivity, nanofluids have many uses in a variety of sectors. Two type of boundary conditions are associated here like prescribed surface temperature (PST) and prescribed heat flux (PHF). Exploring nanoparticles influence on a fluid viscoelasticity, and vice versa, advanced understanding of three-dimensional nanofluid flow over a porous, stretchable surface. The research also probed microorganisms' and reactions' impact on heat/mass transfer. Employing MATLAB and a similarity approach converted Navier-Stokes equations into ordinary differential equations. Outcomes included velocity profile, temperature profiles, concentration profiles, and microbe behavior. Thus, this significantly contributed to modelling collectors and thermal storage. The concentration profile flattens when the Schmidt number <span><math><mrow><mo>(</mo><mi>Sc</mi><mo>)</mo></mrow></math></span> is increased, indicating that the fluid flow behavior is clearly influenced. Moreover, these findings established ways to improve energy systems' efficiency by elucidating heat transport and fluid flow parameters. This enables sustainable energy solutions to tackle global challenges. The influence of various convergence parameters is illustrated through graphically and in the form of table. Also, our results are validated with the previously published data and found tremendous agreement.</div></div>","PeriodicalId":397,"journal":{"name":"Nano-Structures & Nano-Objects","volume":"40 ","pages":"Article 101374"},"PeriodicalIF":5.45,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142416372","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Chemical synthesis of NiO nanoparticles from Solanum trilobatum leaf extract for antibacterial and cytotoxic properties 从三叶茄叶提取物中化学合成具有抗菌和细胞毒性特性的氧化镍纳米颗粒
IF 5.45
Nano-Structures & Nano-Objects Pub Date : 2024-10-09 DOI: 10.1016/j.nanoso.2024.101337
V. Prabha , T. Janisubha , S.R. Gibin , P. Pandi , A. Mariappan , M. Tamilelakkiya , P. Velusamy
{"title":"Chemical synthesis of NiO nanoparticles from Solanum trilobatum leaf extract for antibacterial and cytotoxic properties","authors":"V. Prabha ,&nbsp;T. Janisubha ,&nbsp;S.R. Gibin ,&nbsp;P. Pandi ,&nbsp;A. Mariappan ,&nbsp;M. Tamilelakkiya ,&nbsp;P. Velusamy","doi":"10.1016/j.nanoso.2024.101337","DOIUrl":"10.1016/j.nanoso.2024.101337","url":null,"abstract":"<div><div>The chemical precipitation approach was employed to synthesize Nickel oxide nanoparticles (NiONPs) using Solanum trilobatum leaf extract as the stimulant and Nickel nitrate as the precursor. The Nickel oxide is examined using a range of characterization methods including X-ray diffraction, Fourier Transform Infrared spectroscopy, High-Resolution Transmission Electron Microscopy, High-Resolution Scanning Electron Microscopy, X-ray photoelectron spectroscopy, Thermo gravimetric Analysis/Derivative Thermo gravimetric Analysis, Diffuse Reflectance Spectroscopy, cytotoxicity and antimicrobial investigations The X-ray diffraction examination determined that the average size of the crystals increases as the quantities of leaf extract in the NiO<sub>2</sub> composites rise. The decrease in line broadening (β) value and the increase in leaf extract concentrations may be the cause of this phenomenon. The FTIR spectrum confirms that the as-synthesized NiO-NPs are of great purity and match well with the XRD pattern. The thermal stability of the synthesized samples was determined using TGA/DTG analysis. The analysis was conducted in an air atmosphere, with the temperature increasing at a rate of 10°C per minute. The temperature range for the analysis was from room temperature to 750°C. The optical properties are determined by the use of Diffuse Reflectance Spectroscopy, which examines the coordinated movement of electrons in the conduction band when exposed to electromagnetic waves. Rat skeletal muscle cell line and SKMEL cancer cells were cultured on 96-well plates and incubated at 37°C and 5 % CO<sub>2</sub> for 24 hours to allow them to adapt to the culture conditions. An investigation was conducted to assess the antibacterial properties of synthesized nanocomposites against two types of bacteria: gram-positive <em>Staphylococcus aureus</em> (MTCC No: 87) and gram-negative <em>Escherichia coli</em> (MTCC No: 443), in order to explore their potential for biological applications.</div></div>","PeriodicalId":397,"journal":{"name":"Nano-Structures & Nano-Objects","volume":"40 ","pages":"Article 101337"},"PeriodicalIF":5.45,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142416371","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Probing the impact of group 7 transition metals (TM: Mn, Tc, Re) encapsulated Ge-doped graphitic carbon nitrides (TM_Ge@g-C3N4) nanostructure as sensors for fenitrothion; an organophosphate insecticide 探究第 7 族过渡金属(TM:Mn、Tc、Re)封装的掺杂 Ge 的石墨化碳氮化物(TM_Ge@g-C3N4)纳米结构作为杀螟硫磷传感器的影响;杀螟硫磷是一种有机磷杀虫剂
IF 5.45
Nano-Structures & Nano-Objects Pub Date : 2024-10-07 DOI: 10.1016/j.nanoso.2024.101367
Daniel G. Malu , Abo I. Nta , Ita I. Oyosukhu , Terkumbur E. Gber , Favour A. Nelson , Abasifreke U. Johnson
{"title":"Probing the impact of group 7 transition metals (TM: Mn, Tc, Re) encapsulated Ge-doped graphitic carbon nitrides (TM_Ge@g-C3N4) nanostructure as sensors for fenitrothion; an organophosphate insecticide","authors":"Daniel G. Malu ,&nbsp;Abo I. Nta ,&nbsp;Ita I. Oyosukhu ,&nbsp;Terkumbur E. Gber ,&nbsp;Favour A. Nelson ,&nbsp;Abasifreke U. Johnson","doi":"10.1016/j.nanoso.2024.101367","DOIUrl":"10.1016/j.nanoso.2024.101367","url":null,"abstract":"<div><div>The prevalence and detrimental effect of insecticides on the environment and human health highlights the necessity for developing effective sensing and adsorbing materials. Among these, organophosphate insecticides have garnered significant attention due to their widespread use, and potential adverse effects. Herein, the electronic properties of graphitic carbon nitride (g-C3N4) were engineered by doping with Ge-atom (Ge@C3N4) which was further enhanced by encapsulating the surface with manganese (Mn), technetium (Tc), and rhenium (Re) atom using density functional theory (DFT) at the GD3BJ-B3LYP/def2svp level of theory. The obtained results unveiled that the incorporation of Mn, Tc, and Re metals into the Ge@C3N4 framework significantly altered the electronic structure of the composite materials and enhanced the adsorption of Fenitrothion (FTT). After interaction of fenitrothion unto the engineered surfaces, a decrease in the energy gap was observed following a trends; Mn_Ge@C3N4 &gt; Re_Ge@C3N4 &gt; Tc_Ge@C3N4 with their respective energy from 1.972 eV to 1.892 eV, 1.333 eV to 1.172 eV, and 1.129 eV to 1.094 eV. And, Ge@C3N4 demonstrating a slight increase in the energy gap delineating the effectiveness of the modified compounds in sensing and adsorbing FTT. Interestingly, the adsorption studies proved to be chemisorption with the observed energies following the pattern base on their sensing capabilities Ge@C3N4 &lt; Mn&lt; Tc&lt; Re corresponding to the energies as thus: −1.533 eV, −1.602 eV, −1.622 eV, −1.653 eV depicting Rhenium-encapsulated Ge@C3N4 doped surface the more favorable for the adsorption of FTT molecule followed by technetium-encapsulated Ge@C3N4. It was further observed that all the mechanistic adsorption studies and visual studies analyses presented Re_Ge@C3N4 as the most efficient surface for adsorption and detection of FTT<sub>.</sub></div></div>","PeriodicalId":397,"journal":{"name":"Nano-Structures & Nano-Objects","volume":"40 ","pages":"Article 101367"},"PeriodicalIF":5.45,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142416249","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信