基于高度矿化溶液的纳米悬浮液的胶体稳定性

IF 5.45 Q1 Physics and Astronomy
Roman Vaganov, Vladimir Zhigarev, Maxim Pryazhnikov, Andrey Minakov
{"title":"基于高度矿化溶液的纳米悬浮液的胶体稳定性","authors":"Roman Vaganov,&nbsp;Vladimir Zhigarev,&nbsp;Maxim Pryazhnikov,&nbsp;Andrey Minakov","doi":"10.1016/j.nanoso.2024.101414","DOIUrl":null,"url":null,"abstract":"<div><div>The potential use of nanosuspensions in enhanced oil recovery is currently under vigorous investigation. A large body of evidence supports the viability of this research direction. However, considerable challenges still remain in this area. One such challenge is the high degree of mineralization observed in formation water in many oil fields. In such conditions, nanosuspensions may exhibit low aggregation and sedimentation stability. This study represents a systematic investigation into the potential for improving the sedimentation stability of SiO<sub>2</sub> (18 nm) nanosuspensions prepared using highly mineralized water (up to 300 g/l) of varying composition. This is the first time such an investigation has been carried out. To stabilize SiO<sub>2</sub> nanosuspensions in mineralized water, the effect of various additives (ethylene diamine tetraacetate acid dynatrium salt solution, synthanol, starch, sodium citrate, ammonium tartrate, and malonic acid) was investigated at the concentrations up to 3 wt%. The impact of salt type and concentration, as well as stabilizer type and concentration on the colloidal stability of nanosuspensions was examined. The results demonstrate that nanosuspensions exhibit a loss of colloidal stability at salt concentrations above 100 g/l. Furthermore, their sedimentation stability in formation water is approximately two times lower than that in a NaCl-based solution with the same degree of mineralization. The results of the conducted studies indicate that the optimal stabilizing properties for nanosuspensions in highly mineralized waters are possessed by additives of malonic acid and sodium citrate at a concentration of 1 wt%.</div></div>","PeriodicalId":397,"journal":{"name":"Nano-Structures & Nano-Objects","volume":"40 ","pages":"Article 101414"},"PeriodicalIF":5.4500,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Colloidal stability of nanosuspensions based on highly mineralized solutions\",\"authors\":\"Roman Vaganov,&nbsp;Vladimir Zhigarev,&nbsp;Maxim Pryazhnikov,&nbsp;Andrey Minakov\",\"doi\":\"10.1016/j.nanoso.2024.101414\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The potential use of nanosuspensions in enhanced oil recovery is currently under vigorous investigation. A large body of evidence supports the viability of this research direction. However, considerable challenges still remain in this area. One such challenge is the high degree of mineralization observed in formation water in many oil fields. In such conditions, nanosuspensions may exhibit low aggregation and sedimentation stability. This study represents a systematic investigation into the potential for improving the sedimentation stability of SiO<sub>2</sub> (18 nm) nanosuspensions prepared using highly mineralized water (up to 300 g/l) of varying composition. This is the first time such an investigation has been carried out. To stabilize SiO<sub>2</sub> nanosuspensions in mineralized water, the effect of various additives (ethylene diamine tetraacetate acid dynatrium salt solution, synthanol, starch, sodium citrate, ammonium tartrate, and malonic acid) was investigated at the concentrations up to 3 wt%. The impact of salt type and concentration, as well as stabilizer type and concentration on the colloidal stability of nanosuspensions was examined. The results demonstrate that nanosuspensions exhibit a loss of colloidal stability at salt concentrations above 100 g/l. Furthermore, their sedimentation stability in formation water is approximately two times lower than that in a NaCl-based solution with the same degree of mineralization. The results of the conducted studies indicate that the optimal stabilizing properties for nanosuspensions in highly mineralized waters are possessed by additives of malonic acid and sodium citrate at a concentration of 1 wt%.</div></div>\",\"PeriodicalId\":397,\"journal\":{\"name\":\"Nano-Structures & Nano-Objects\",\"volume\":\"40 \",\"pages\":\"Article 101414\"},\"PeriodicalIF\":5.4500,\"publicationDate\":\"2024-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nano-Structures & Nano-Objects\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2352507X24003263\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Physics and Astronomy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano-Structures & Nano-Objects","FirstCategoryId":"1","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352507X24003263","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0

摘要

纳米悬浮液在提高采收率方面的潜在应用目前正在积极研究中。大量证据支持这一研究方向的可行性。然而,这一领域仍然存在相当大的挑战。其中一个挑战是在许多油田的地层水中观察到的高度矿化。在这种条件下,纳米悬浮液可能表现出较低的聚集和沉降稳定性。本研究对不同成分的高矿化水(高达300 g/l)制备的SiO2(18 nm)纳米悬浮液改善沉降稳定性的潜力进行了系统研究。这是第一次进行这样的调查。为了稳定矿化水中的SiO2纳米悬浮液,研究了各种添加剂(乙二胺四乙酸钠钠盐溶液、合成乙醇、淀粉、柠檬酸钠、酒石酸铵和丙二酸)在3 wt%浓度下的影响。考察了盐的种类和浓度、稳定剂的种类和浓度对纳米悬浮液胶体稳定性的影响。结果表明,当盐浓度超过100 g/l时,纳米悬浮液表现出胶体稳定性的丧失。此外,它们在地层水中的沉降稳定性比在相同矿化程度的nacl基溶液中的沉降稳定性低约两倍。研究结果表明,丙二酸和柠檬酸钠的浓度为1 wt%时,纳米悬浮液在高矿化度水体中的稳定性能最佳。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Colloidal stability of nanosuspensions based on highly mineralized solutions
The potential use of nanosuspensions in enhanced oil recovery is currently under vigorous investigation. A large body of evidence supports the viability of this research direction. However, considerable challenges still remain in this area. One such challenge is the high degree of mineralization observed in formation water in many oil fields. In such conditions, nanosuspensions may exhibit low aggregation and sedimentation stability. This study represents a systematic investigation into the potential for improving the sedimentation stability of SiO2 (18 nm) nanosuspensions prepared using highly mineralized water (up to 300 g/l) of varying composition. This is the first time such an investigation has been carried out. To stabilize SiO2 nanosuspensions in mineralized water, the effect of various additives (ethylene diamine tetraacetate acid dynatrium salt solution, synthanol, starch, sodium citrate, ammonium tartrate, and malonic acid) was investigated at the concentrations up to 3 wt%. The impact of salt type and concentration, as well as stabilizer type and concentration on the colloidal stability of nanosuspensions was examined. The results demonstrate that nanosuspensions exhibit a loss of colloidal stability at salt concentrations above 100 g/l. Furthermore, their sedimentation stability in formation water is approximately two times lower than that in a NaCl-based solution with the same degree of mineralization. The results of the conducted studies indicate that the optimal stabilizing properties for nanosuspensions in highly mineralized waters are possessed by additives of malonic acid and sodium citrate at a concentration of 1 wt%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nano-Structures & Nano-Objects
Nano-Structures & Nano-Objects Physics and Astronomy-Condensed Matter Physics
CiteScore
9.20
自引率
0.00%
发文量
60
审稿时长
22 days
期刊介绍: Nano-Structures & Nano-Objects is a new journal devoted to all aspects of the synthesis and the properties of this new flourishing domain. The journal is devoted to novel architectures at the nano-level with an emphasis on new synthesis and characterization methods. The journal is focused on the objects rather than on their applications. However, the research for new applications of original nano-structures & nano-objects in various fields such as nano-electronics, energy conversion, catalysis, drug delivery and nano-medicine is also welcome. The scope of Nano-Structures & Nano-Objects involves: -Metal and alloy nanoparticles with complex nanostructures such as shape control, core-shell and dumbells -Oxide nanoparticles and nanostructures, with complex oxide/metal, oxide/surface and oxide /organic interfaces -Inorganic semi-conducting nanoparticles (quantum dots) with an emphasis on new phases, structures, shapes and complexity -Nanostructures involving molecular inorganic species such as nanoparticles of coordination compounds, molecular magnets, spin transition nanoparticles etc. or organic nano-objects, in particular for molecular electronics -Nanostructured materials such as nano-MOFs and nano-zeolites -Hetero-junctions between molecules and nano-objects, between different nano-objects & nanostructures or between nano-objects & nanostructures and surfaces -Methods of characterization specific of the nano size or adapted for the nano size such as X-ray and neutron scattering, light scattering, NMR, Raman, Plasmonics, near field microscopies, various TEM and SEM techniques, magnetic studies, etc .
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信