Andrea Antosova , Miroslav Gancar , Zuzana Bednarikova , Iryna Antal , Patrizia Verducci , Olga Parmar , Martina Kubovcikova , Martina Koneracka , Vlasta Zavisova , Patrizio Graziosi , Barbara Luppi , Zuzana Gazova , Eva Bystrenova
{"title":"Anti-amyloid activity of amino acid functionalized magnetic nanoparticles on αLactalbumin aggregation","authors":"Andrea Antosova , Miroslav Gancar , Zuzana Bednarikova , Iryna Antal , Patrizia Verducci , Olga Parmar , Martina Kubovcikova , Martina Koneracka , Vlasta Zavisova , Patrizio Graziosi , Barbara Luppi , Zuzana Gazova , Eva Bystrenova","doi":"10.1016/j.nanoso.2024.101413","DOIUrl":null,"url":null,"abstract":"<div><div>Protein amyloid aggregation involves structural changes in native protein conformers and the formation of amyloid fibrils that accumulate in deposits in the human body. This study explores the effect of magnetic nanoparticles functionalized with amino acids (aaMNPs)—cysteine (Cys), poly-L-lysine (PLL), or proline (Pro)—on the amyloid aggregation of α-lactalbumin (αLA) and its amyloid fibrils (LAF). Our results from thioflavin T fluorescence assay (ThT), atomic force microscopy (AFM), and infrared spectroscopy revealed that the studied aaMNPs inhibit αLA fibrillization and destruct LAF in a concentration-dependent manner. The type of amino acid used for nanoparticle functionalization significantly influences the anti-amyloid efficacy. ProMNPs exhibit the highest inhibitory activity, with the timing of their addition being crucial Conversely, CysMNPs demonstrate the highest destructing activity. AFM image analysis through grain mapping was employed to quantify the anti-amyloid effects of aaMNPs. Cytotoxicity testing on kidney cells identified PLLMNPs as the only cytotoxic nanoparticles in our study. These findings clarify the mechanisms of inhibition and destruction of LAF in the presence of aaMNPs, which could inform the design of nanoparticles for therapeutic purposes in the future.</div></div>","PeriodicalId":397,"journal":{"name":"Nano-Structures & Nano-Objects","volume":"40 ","pages":"Article 101413"},"PeriodicalIF":5.4500,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano-Structures & Nano-Objects","FirstCategoryId":"1","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352507X24003251","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0
Abstract
Protein amyloid aggregation involves structural changes in native protein conformers and the formation of amyloid fibrils that accumulate in deposits in the human body. This study explores the effect of magnetic nanoparticles functionalized with amino acids (aaMNPs)—cysteine (Cys), poly-L-lysine (PLL), or proline (Pro)—on the amyloid aggregation of α-lactalbumin (αLA) and its amyloid fibrils (LAF). Our results from thioflavin T fluorescence assay (ThT), atomic force microscopy (AFM), and infrared spectroscopy revealed that the studied aaMNPs inhibit αLA fibrillization and destruct LAF in a concentration-dependent manner. The type of amino acid used for nanoparticle functionalization significantly influences the anti-amyloid efficacy. ProMNPs exhibit the highest inhibitory activity, with the timing of their addition being crucial Conversely, CysMNPs demonstrate the highest destructing activity. AFM image analysis through grain mapping was employed to quantify the anti-amyloid effects of aaMNPs. Cytotoxicity testing on kidney cells identified PLLMNPs as the only cytotoxic nanoparticles in our study. These findings clarify the mechanisms of inhibition and destruction of LAF in the presence of aaMNPs, which could inform the design of nanoparticles for therapeutic purposes in the future.
期刊介绍:
Nano-Structures & Nano-Objects is a new journal devoted to all aspects of the synthesis and the properties of this new flourishing domain. The journal is devoted to novel architectures at the nano-level with an emphasis on new synthesis and characterization methods. The journal is focused on the objects rather than on their applications. However, the research for new applications of original nano-structures & nano-objects in various fields such as nano-electronics, energy conversion, catalysis, drug delivery and nano-medicine is also welcome. The scope of Nano-Structures & Nano-Objects involves: -Metal and alloy nanoparticles with complex nanostructures such as shape control, core-shell and dumbells -Oxide nanoparticles and nanostructures, with complex oxide/metal, oxide/surface and oxide /organic interfaces -Inorganic semi-conducting nanoparticles (quantum dots) with an emphasis on new phases, structures, shapes and complexity -Nanostructures involving molecular inorganic species such as nanoparticles of coordination compounds, molecular magnets, spin transition nanoparticles etc. or organic nano-objects, in particular for molecular electronics -Nanostructured materials such as nano-MOFs and nano-zeolites -Hetero-junctions between molecules and nano-objects, between different nano-objects & nanostructures or between nano-objects & nanostructures and surfaces -Methods of characterization specific of the nano size or adapted for the nano size such as X-ray and neutron scattering, light scattering, NMR, Raman, Plasmonics, near field microscopies, various TEM and SEM techniques, magnetic studies, etc .