Nano-Structures & Nano-Objects最新文献

筛选
英文 中文
Comprehensive evaluation of TiO2 nanofluid stability: Insights from pH, EC measurements, and UV-Vis spectroscopy 全面评估 TiO2 纳米流体的稳定性:从 pH 值、导电率测量和紫外可见光谱中获得的启示
IF 5.45
Nano-Structures & Nano-Objects Pub Date : 2024-10-28 DOI: 10.1016/j.nanoso.2024.101387
Chakar Khadija , Asdiou Nouhaila , Salhi Anas , Salhi Imane , El Mouden Mahmoud , Hajjaji Abdelowahed , Muthanna H. Al-Dahhan
{"title":"Comprehensive evaluation of TiO2 nanofluid stability: Insights from pH, EC measurements, and UV-Vis spectroscopy","authors":"Chakar Khadija ,&nbsp;Asdiou Nouhaila ,&nbsp;Salhi Anas ,&nbsp;Salhi Imane ,&nbsp;El Mouden Mahmoud ,&nbsp;Hajjaji Abdelowahed ,&nbsp;Muthanna H. Al-Dahhan","doi":"10.1016/j.nanoso.2024.101387","DOIUrl":"10.1016/j.nanoso.2024.101387","url":null,"abstract":"<div><div>This study delves into assessing the stability of different nanofluids containing TiO<sub>2</sub> nanoparticles, employing either ethylene glycol (EG) or water as the base fluid. The results obtained will be applied to photovoltaic panels in future work, in particular to solve the cooling problems facing these systems, in order to improve their efficiency and durability. The nanoparticles, approximately 75 nm in size as determined by the Debye-Scherrer equation and X-ray diffraction (XRD), were utilized to formulate nanofluids at concentrations of 0.1 %, 0.3 %, and 0.5 % using a two-step method. To gauge the stability of these prepared nanofluids, practical investigations were conducted involving pH and electrical conductivity (EC) measurements, along with UV-Vis spectroscopy spanning the wavelength range of 200–800 nm. The findings reveal that nanofluids with 0.1 % and 0.5 % TiO<sub>2</sub> in water demonstrated promising stability. Moreover, the absorbance levels of nanofluids containing 0.1 %, 0.3 %, and 0.5 % TiO<sub>2</sub> in EG, as well as 0.3 % TiO<sub>2</sub> in water, decreased with increasing settling time, as observed through UV-Vis spectroscopy analysis, consistent with prior research. Additionally, the study of pH and EC stability for 0.5 % TiO<sub>2</sub> in water indicated satisfactory results.</div></div>","PeriodicalId":397,"journal":{"name":"Nano-Structures & Nano-Objects","volume":"40 ","pages":"Article 101387"},"PeriodicalIF":5.45,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142531466","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effect of silver doping on structural, optical and antifungal properties of copper oxide nanoparticles prepared using Colocasia esculenta leaf extract 银掺杂对利用芋叶提取物制备的氧化铜纳米粒子的结构、光学和抗真菌特性的影响
IF 5.45
Nano-Structures & Nano-Objects Pub Date : 2024-10-28 DOI: 10.1016/j.nanoso.2024.101385
P. Kiran Kumar , Bharathipriya Rajasekaran , Vaidyanathan Vinoth Kumar , Vahulabaranan Rajagopalan , P. Karthik
{"title":"Effect of silver doping on structural, optical and antifungal properties of copper oxide nanoparticles prepared using Colocasia esculenta leaf extract","authors":"P. Kiran Kumar ,&nbsp;Bharathipriya Rajasekaran ,&nbsp;Vaidyanathan Vinoth Kumar ,&nbsp;Vahulabaranan Rajagopalan ,&nbsp;P. Karthik","doi":"10.1016/j.nanoso.2024.101385","DOIUrl":"10.1016/j.nanoso.2024.101385","url":null,"abstract":"<div><div>Copper oxide (CuO) nanoparticles have attracted significant interest for their diverse applications. This study focused on the eco-friendly synthesis of undoped and silver (Ag) doped CuO nanoparticles using <em>Colocasia esculenta</em> leaf extract. XRD analysis revealed a cubic crystal structure in Ag doped nanoparticles with reduced crystallinity compared to undoped counterpart. FTIR spectra confirmed the efficient encapsulation of plant extracts and significant microstructural modification due to doping. Both undoped and Ag-doped CuO nanoparticles exhibited distinct optical property, characterized by a consistent direct band gap energy of 5.3 eV. Ag-doped CuO nanoparticles demonstrated a higher negative zeta potential (-29 mV) and smaller particle size (98.5 nm), resulting in a stable colloidal dispersion with lower polydispersity index. Morphology revealed reduced agglomeration and smaller grain size in doped CuO nanoparticles, leading to more uniform, spherical particles as confirmed by EDX, which indicated the successful inclusion of Ag ions in the CuO lattice. Furthermore, Ag doping significantly enhanced antifungal activities of CuO nanoparticles (p&lt;0.01). The increased generation of reactive oxygen species led to greater microbial cell damage and higher inhibition zones, with a maximum inhibition of 28 nm and 27 nm against <em>Botrytis cinerea</em> and <em>Phoma medicaginis</em>, respectively at a concentration of 250 µg/ml. Hence, the study highlights the potential of green synthesized CuO nanoparticles, especially Ag-doped variants, as effective antifungal agents. Their versatile properties make CuO nanoparticles as a promising candidate for a wide range of applications in biomedicine and agriculture.</div></div>","PeriodicalId":397,"journal":{"name":"Nano-Structures & Nano-Objects","volume":"40 ","pages":"Article 101385"},"PeriodicalIF":5.45,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142530794","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A review of corrosion resistance in steel alloys with MOF-embedded coatings 含 MOF 嵌入涂层的钢合金耐腐蚀性综述
IF 5.45
Nano-Structures & Nano-Objects Pub Date : 2024-10-25 DOI: 10.1016/j.nanoso.2024.101384
Arash Fattah-alhosseini, Shiva Zaheri, Minoo Karbasi
{"title":"A review of corrosion resistance in steel alloys with MOF-embedded coatings","authors":"Arash Fattah-alhosseini,&nbsp;Shiva Zaheri,&nbsp;Minoo Karbasi","doi":"10.1016/j.nanoso.2024.101384","DOIUrl":"10.1016/j.nanoso.2024.101384","url":null,"abstract":"<div><div>Steel is widely used due to its strength, cost-effectiveness, availability, ease of fabrication, ductility, and design flexibility. However, corrosion is a significant challenge, especially in outdoor environments, leading to gradual degradation. Applying coatings to steel and its alloys is an effective way to protect them from corrosive media. Recently, researchers have explored using metal-organic frameworks (MOFs) in protective coatings for various metal alloys. MOFs, hybrid crystalline materials made of metal ions (or clusters) bonded to organic ligands, have gained substantial interest in both organic and inorganic chemistry. They exhibit remarkable characteristics, such as high specific surface area, tunable structure and functionality, well-organized pore arrangement, and abundant active sites, making them promising anticorrosion materials. This review paper focuses on recent research developments in MOF-based corrosion protection materials and assesses their effectiveness in preventing corrosion.</div></div>","PeriodicalId":397,"journal":{"name":"Nano-Structures & Nano-Objects","volume":"40 ","pages":"Article 101384"},"PeriodicalIF":5.45,"publicationDate":"2024-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142530792","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Multiscale modeling-driven synthesis of Cu40Zn24Ni24Ag8Hg4 high entropy alloy with antibacterial properties 多尺度建模驱动合成具有抗菌性能的 Cu40Zn24Ni24Ag8Hg4 高熵合金
IF 5.45
Nano-Structures & Nano-Objects Pub Date : 2024-10-25 DOI: 10.1016/j.nanoso.2024.101391
Prince Sharma , Sahil Rohila , Uzma Hasan , P. Hari Krishna , Chima Ugwuegbu , Abhishek Tiwari , Manish Joshi
{"title":"Multiscale modeling-driven synthesis of Cu40Zn24Ni24Ag8Hg4 high entropy alloy with antibacterial properties","authors":"Prince Sharma ,&nbsp;Sahil Rohila ,&nbsp;Uzma Hasan ,&nbsp;P. Hari Krishna ,&nbsp;Chima Ugwuegbu ,&nbsp;Abhishek Tiwari ,&nbsp;Manish Joshi","doi":"10.1016/j.nanoso.2024.101391","DOIUrl":"10.1016/j.nanoso.2024.101391","url":null,"abstract":"<div><div>High-entropy alloys (HEAs) are promising materials across various sectors, yet their potential as antibacterial powders remain underexplored. In this study, we synthesized a novel Cu-Zn-Ni-Ag-Hg-based HEA using CALPHAD and DFT methods coupled with mechanical alloying. The HEA's antibacterial efficacy against <em>Staphylococcus aureus</em> (<em>S. aureus)</em> and <em>Escherichia coli</em> (<em>E. Coli)</em> was systematically evaluated. Computational and experimental analyses confirmed the HEA's single-phase FCC structure. Mechanical alloying for 8 h facilitated the formation of the single-phase HEA, with Ni and Cu initially dissolving into each other, followed by Zn, Ag, and Hg. Antibacterial testing demonstrated minimum inhibitory concentrations of 400 µg/mL for <em>S. aureus</em> and 600 µg/mL for <em>E. coli</em>, highlighting the broad-spectrum antibacterial properties of the synthesized HEA. These results underscore the potential of HEAs in advancing antibacterial materials for biomedical applications.</div></div>","PeriodicalId":397,"journal":{"name":"Nano-Structures & Nano-Objects","volume":"40 ","pages":"Article 101391"},"PeriodicalIF":5.45,"publicationDate":"2024-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142530793","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Nano-engineered solutions for extensively drug-resistant tuberculosis (XDR-TB): A novel nanomedicine 针对广泛耐药结核病(XDR-TB)的纳米工程解决方案:新型纳米药物
IF 5.45
Nano-Structures & Nano-Objects Pub Date : 2024-10-25 DOI: 10.1016/j.nanoso.2024.101390
Dilpreet Singh , Vrinda Krishna , Nitya Kumari , Anoushka Banerjee , Prithviraj Kapoor
{"title":"Nano-engineered solutions for extensively drug-resistant tuberculosis (XDR-TB): A novel nanomedicine","authors":"Dilpreet Singh ,&nbsp;Vrinda Krishna ,&nbsp;Nitya Kumari ,&nbsp;Anoushka Banerjee ,&nbsp;Prithviraj Kapoor","doi":"10.1016/j.nanoso.2024.101390","DOIUrl":"10.1016/j.nanoso.2024.101390","url":null,"abstract":"<div><div>Nano-engineered solutions are revolutionizing the fight against Extensively Drug-Resistant Tuberculosis (XDR-TB), a major public health challenge resistant to conventional TB drugs. Utilizing the unique properties of nanoparticles, this new nanomedicine paradigm enhances drug delivery, combats bacterial resistance and reduces side effects, offering a promising advance in TB therapy. Nanoparticles can penetrate mycobacterial cells more effectively than traditional drugs due to their size, enabling precise drug delivery directly to infected cells. This targeted delivery increases drug efficacy and limits exposure to non-infected cells, reducing potential side effects. Additionally, nanoparticles can be modified with ligands that specifically bind to mycobacterial cells, ensuring precise drug delivery. Nano-engineering also allows for the co-delivery of multiple drugs within a single nanoparticle, crucial for the multi-drug regimen needed for XDR-TB. Encapsulating drugs within nanoparticles allows for controlled release at the infection site, maintaining effective drug levels over time and improving treatment efficacy. Furthermore, incorporating diagnostic agents into these nanoparticles supports a theranostic approach, allowing real-time monitoring of treatment and disease progression. This integrated strategy ensures timely treatment adjustments and personalizes therapy, making nano-engineered solutions a novel and effective approach to tackle XDR-TB.</div></div>","PeriodicalId":397,"journal":{"name":"Nano-Structures & Nano-Objects","volume":"40 ","pages":"Article 101390"},"PeriodicalIF":5.45,"publicationDate":"2024-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142530791","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Enhancing exemestane delivery: Solid lipid nanoparticles formulation and pharmacokinetic evaluation 加强依西美坦的给药:固体脂质纳米颗粒配方和药代动力学评估
IF 5.45
Nano-Structures & Nano-Objects Pub Date : 2024-10-24 DOI: 10.1016/j.nanoso.2024.101388
Bhupendra G. Prajapati , Payal Patel , Himanshu Paliwal , Dignesh Khunt
{"title":"Enhancing exemestane delivery: Solid lipid nanoparticles formulation and pharmacokinetic evaluation","authors":"Bhupendra G. Prajapati ,&nbsp;Payal Patel ,&nbsp;Himanshu Paliwal ,&nbsp;Dignesh Khunt","doi":"10.1016/j.nanoso.2024.101388","DOIUrl":"10.1016/j.nanoso.2024.101388","url":null,"abstract":"<div><div>This research investigates the development of exemestane (EXM) solid lipid nanoparticles (SLNs) for the purpose of improving drug delivery. To prepare EXM SLNs, glycerol monostearate was used as the lipid and Tween 80 as the surfactant and solvent injection followed by high-pressure homogenization as a method of preparation. The formulation parameters were optimized, leading to the development of a promising formula. The formula has a particle size of 188.72 ± 5.62 nm, a polydispersity index (PDI) of 0.215 ± 0.023, and an %EE of 65.39 ± 2.54 %. The formulation's robustness was indicated by minimal changes in particle size and %EE over 30 days, as revealed by stability studies. The bioavailability of EXM SLNs was found to be significantly improved in Wistar rats compared to conventional EXM suspension, as shown by pharmacokinetic studies. The formula that was optimized showed a higher maximum plasma concentration (Cmax) of 168.92 ± 2.40 ng/mL, a delayed time to reach Cmax (Tmax) of 4 hours, and significantly higher area under the curve (AUC) values. These results highlight the effectiveness of the optimized formula in improving drug absorption and bioavailability. The findings indicate that EXM SLNs show potential for enhancing the delivery and effectiveness of EXM, specifically in the treatment of breast cancer.</div></div>","PeriodicalId":397,"journal":{"name":"Nano-Structures & Nano-Objects","volume":"40 ","pages":"Article 101388"},"PeriodicalIF":5.45,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142531475","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A novel Acryloyloxy tamarind kernel powder biocompoites and enhanced antibacterial activity 一种新型丙烯酰氧基罗望子核粉生物微粒和增强的抗菌活性
IF 5.45
Nano-Structures & Nano-Objects Pub Date : 2024-10-23 DOI: 10.1016/j.nanoso.2024.101383
Sakshi Saini, Jagram Meena
{"title":"A novel Acryloyloxy tamarind kernel powder biocompoites and enhanced antibacterial activity","authors":"Sakshi Saini,&nbsp;Jagram Meena","doi":"10.1016/j.nanoso.2024.101383","DOIUrl":"10.1016/j.nanoso.2024.101383","url":null,"abstract":"<div><div>This study aimed to develop eco-friendly biocomposites using acryloyl chloride as a graft monomer with tamarind kernel powder (TKP) as the polymer backbone and evaluate their antibacterial activity. The process involved the esterification of TKP with pre-synthesized acryloyl chloride as the grafting agent, resulting in a novel TKP derivative that enhances material properties. The biocomposites were subjected to comprehensive characterization, including morphological, structural, thermal, and antibacterial analyses. Through the modification with acrylic functionality, the biocomposite exhibited a crystallinity of approximately 51.77 %, a significant increase compared to the 33.56 % crystallinity observed in neat TKP. Moreover, the biocomposites showed enhanced antibacterial activity with an increase of 88 % against <em>Escherichia coli</em> and 74 % against <em>Staphylococcus aureus</em> holding potential for neat TKP. Given these improved characteristics the biocomposites hold potential applications in biomedical.</div></div>","PeriodicalId":397,"journal":{"name":"Nano-Structures & Nano-Objects","volume":"40 ","pages":"Article 101383"},"PeriodicalIF":5.45,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142531473","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Significance of Fe3O4-Cu/H2O hybrid nanofluid flow and heat transfer over a rotating geometry embedded with particle shape and thermal radiation 嵌入颗粒形状和热辐射的旋转几何体上 Fe3O4-Cu/H2O 混合纳米流体流动和传热的意义
IF 5.45
Nano-Structures & Nano-Objects Pub Date : 2024-10-23 DOI: 10.1016/j.nanoso.2024.101386
Aaqib Majeed , Muhammad Umar Farooq , Parvez Ali
{"title":"Significance of Fe3O4-Cu/H2O hybrid nanofluid flow and heat transfer over a rotating geometry embedded with particle shape and thermal radiation","authors":"Aaqib Majeed ,&nbsp;Muhammad Umar Farooq ,&nbsp;Parvez Ali","doi":"10.1016/j.nanoso.2024.101386","DOIUrl":"10.1016/j.nanoso.2024.101386","url":null,"abstract":"<div><div>The current study aims to explore the three-dimensional magneto-hydrodynamic (MHD) Darcy-Forchheimer flow of radiative hybrid nanofluid over a rotating stretching sheet. The investigation also considers the impact of thermal radiation and the spherical shape of the particles. Present examinations copper (Cu) and iron oxide (Fe₃O₄) nanoparticles are dispersed in water (H₂O) to form the hybrid nanofluid used for analysis. The influence of inertial force and thermal radiation also incorporated in the energy equation. The mathematical model which comprised of partial differential equations (PDEs). Transformed into ordinary differential equations (ODEs) via similarity transformations. The numerical and graphical solutions of these ODEs are obtained with the help of bvp4c and MATLAB algorithm. The outcomes signify that the effect on the velocity profile of x-component is decline when large input values of magnetic parameter, porosity parameter, rotation parameter and inertial coefficient and opposite behaviors show in y-component of velocity profile. Based on the data, the results reveal a 39.1 % enhancement in heat transfer when transitioning from a nanofluid to a hybrid nanofluid at <span><math><mrow><mi>λ</mi><mspace></mspace><mo>=</mo><mspace></mspace><mn>0.3</mn></mrow></math></span>. Additionally, a 36 % reduction is observed as the magnetic field strength increases from 0.5 to 2.0. Also, observe that temperature profile boost up against rotation parameter and radiation parameter. Present results are compared with the previous ones shows good agreement.</div></div>","PeriodicalId":397,"journal":{"name":"Nano-Structures & Nano-Objects","volume":"40 ","pages":"Article 101386"},"PeriodicalIF":5.45,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142531474","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Photocatalytic degradation of ampicillin antibiotics in aqueous solution utilizing ZnFe2O4/MWCNTs/TiO2 ternary nanocomposite under solar light irradiation 在太阳光照射下利用 ZnFe2O4/MWCNTs/TiO2 三元纳米复合材料光催化降解水溶液中的氨苄青霉素抗生素
IF 5.45
Nano-Structures & Nano-Objects Pub Date : 2024-10-20 DOI: 10.1016/j.nanoso.2024.101389
Davis Varghese , M. Joe Raja Ruban , P. Joselene Suzan Jennifer , D. AnnieCanisius , S. Muthupandi , M. Gladys Joysi , Jijo Francis , J. Madhavan , M. Victor Antony Raj , Saravanan Muthupandian
{"title":"Photocatalytic degradation of ampicillin antibiotics in aqueous solution utilizing ZnFe2O4/MWCNTs/TiO2 ternary nanocomposite under solar light irradiation","authors":"Davis Varghese ,&nbsp;M. Joe Raja Ruban ,&nbsp;P. Joselene Suzan Jennifer ,&nbsp;D. AnnieCanisius ,&nbsp;S. Muthupandi ,&nbsp;M. Gladys Joysi ,&nbsp;Jijo Francis ,&nbsp;J. Madhavan ,&nbsp;M. Victor Antony Raj ,&nbsp;Saravanan Muthupandian","doi":"10.1016/j.nanoso.2024.101389","DOIUrl":"10.1016/j.nanoso.2024.101389","url":null,"abstract":"<div><div>In this study, a novel photocatalyst composed of zinc ferrite (ZnFe₂O₄), titanium dioxide (TiO₂), and multi-walled carbon nanotubes (MWCNTs) was successfully synthesized via the hydrothermal method, and evaluated for the degradation of ampicillin (AMP) in aqueous solutions. The synthesized nanocomposites were thoroughly characterized using various analytical techniques, including XRD, HR-SEM, HR-TEM, EDX, UV-Vis, FT-IR, BET, and XPS analysis. Crystallite sizes of 24.18 nm for ZnFe₂O₄ and 17.8 nm for TiO₂ were determined. The composite exhibited a band gap of 1.4 eV, indicating its enhanced photocatalytic activity. The photocatalytic performance was assessed under varying conditions, including different nanocomposite dosages (0.3–1 g/L), AMP concentrations (10–50 mg/L), and pH values (2–12). The optimal AMP degradation efficiency of 99.2 % was achieved using 0.7 g/L of the photocatalyst, 10 mg/L of AMP, and a pH of 12 under 90 min of solar irradiation. These optimal parameters were then applied to evaluate AMP degradation using ZnFe<sub>2</sub>O<sub>4</sub>, TiO<sub>2</sub>, and ZnFe<sub>2</sub>O<sub>4</sub>/MWCNTs individually, with the degradation rate analyzed using a pseudo-first-order model. The superior photocatalytic efficiency can be primarily attributed to improved charge transfer dynamics and effective electron-hole separation, enabled by the doping of MWCNTs. Hydroxyl radicals (OH<sup>•</sup>) were identified as the primary reactive species responsible for AMP degradation. Furthermore, the catalyst retained 91 % of its photocatalytic efficiency after eight consecutive cycles, demonstrating excellent stability and reusability. These results underscore the potential of the ZnFe₂O₄/MWCNTs/TiO₂ composite as a highly effective and sustainable photocatalyst for removing pharmaceutical pollutants from aquatic environments.</div></div>","PeriodicalId":397,"journal":{"name":"Nano-Structures & Nano-Objects","volume":"40 ","pages":"Article 101389"},"PeriodicalIF":5.45,"publicationDate":"2024-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142531472","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Chemical vapor deposition growth of large-area molybdenum disulphide (MoS2) dendrites 大面积二硫化钼(MoS2)枝晶的化学气相沉积生长
IF 5.45
Nano-Structures & Nano-Objects Pub Date : 2024-10-19 DOI: 10.1016/j.nanoso.2024.101380
Mahima Tyagi , Aman Abhishek Tiwari , Srijata Dey , Deshdeep Sahdev
{"title":"Chemical vapor deposition growth of large-area molybdenum disulphide (MoS2) dendrites","authors":"Mahima Tyagi ,&nbsp;Aman Abhishek Tiwari ,&nbsp;Srijata Dey ,&nbsp;Deshdeep Sahdev","doi":"10.1016/j.nanoso.2024.101380","DOIUrl":"10.1016/j.nanoso.2024.101380","url":null,"abstract":"<div><div>Molybdenum disulphide (MoS<sub>2</sub>) has emerged as a popular transition metal dichalcogenide (TMDC) in the recent decade because of its potential applications in electronic devices, optoelectronics, and fuel cells. Specifically, dendritic MoS<sub>2</sub> has been shown to efficiently catalyse various hydrogen evolution reactions. We report the growth of dendritic MoS<sub>2</sub> flakes on SiO<sub>2</sub>/Si wafers using a sophisticated atmospheric pressure chemical vapor deposition (APCVD) system. High-resolution optical microscopy reveals a morphology comprising different star-shaped dendrites, in addition to large MoS<sub>2</sub> domains, which merge to form a continuous film. Our observations reveal that the dendrites originate from the nucleation centre of a monolayer MoS<sub>2</sub> island, and their branches develop preferentially along the grain boundaries of this island. Raman spectroscopy, Atomic force microscopy (AFM), Field emission scanning electron microscopy (FESEM), and X-ray photoelectron spectroscopy (XPS) measurements were carried out to characterize the as-grown MoS<sub>2</sub> dendrites and further confirm these observations.</div></div>","PeriodicalId":397,"journal":{"name":"Nano-Structures & Nano-Objects","volume":"40 ","pages":"Article 101380"},"PeriodicalIF":5.45,"publicationDate":"2024-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142531471","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信