Tabarak M. Mahmood , Kareem H. Jawad , Majid S. Jabir
{"title":"Synergistic effect of AgNPs and gentamicin: Inhibition of multi-drug resistance bacterial biofilm formation and down-regulated fim H gene","authors":"Tabarak M. Mahmood , Kareem H. Jawad , Majid S. Jabir","doi":"10.1016/j.nanoso.2025.101437","DOIUrl":null,"url":null,"abstract":"<div><div>Antibiotic resistance poses a significant public health concern, particularly in treating urinary tract infections (UTIs) caused by multi-drug resistant (MDR) Gram-negative bacteria. This study presents a novel approach to enhance the antibacterial activity of Gentamicin (Gent) against <em>Proteus mirabilis</em> and <em>Klebsiella pneumoniae</em> through the innovative creation of a silver nanoparticles (AgNPs) nanocomposite, termed Gent@AgNPs, using an environmentally friendly pulsed laser ablation technique. The morphology, size, and elemental composition of the silver nanoparticles (AgNPs) were examined using several analytical techniques, including (ZP.DLS, SEM, UV–vis spectroscopy, FT-IR, XRD, and TEM). The results confirmed that the hetero nanocomposite, consisting of silver nanoparticles and gentamicin, exhibited greater antimicrobial activity compared to gentamicin alone against two types of bacteria <em>P</em>. <em>mirabilis</em> and <em>K. pneumonia</em>. The mixture of silver nanoparticles with gentamicin was produced to enhance the drug delivery method to inhibit the growth of <em>K. pneumonia</em> and <em>P. mirabilis</em>, and also prevent the formation of bacterial biofilms on foley catheters. The smartly hybrid nanocomposite displayed an improvement, suggesting that in the future its potential as a viable therapeutic strategy against <em>P. mirabilis</em> and <em>K. pneumonia</em>. Additionally, it could be a promising approach to avoid the growth of bacterial biofilm formation during urinary tract infections (UTIs).</div></div>","PeriodicalId":397,"journal":{"name":"Nano-Structures & Nano-Objects","volume":"41 ","pages":"Article 101437"},"PeriodicalIF":5.4500,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano-Structures & Nano-Objects","FirstCategoryId":"1","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352507X25000071","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0
Abstract
Antibiotic resistance poses a significant public health concern, particularly in treating urinary tract infections (UTIs) caused by multi-drug resistant (MDR) Gram-negative bacteria. This study presents a novel approach to enhance the antibacterial activity of Gentamicin (Gent) against Proteus mirabilis and Klebsiella pneumoniae through the innovative creation of a silver nanoparticles (AgNPs) nanocomposite, termed Gent@AgNPs, using an environmentally friendly pulsed laser ablation technique. The morphology, size, and elemental composition of the silver nanoparticles (AgNPs) were examined using several analytical techniques, including (ZP.DLS, SEM, UV–vis spectroscopy, FT-IR, XRD, and TEM). The results confirmed that the hetero nanocomposite, consisting of silver nanoparticles and gentamicin, exhibited greater antimicrobial activity compared to gentamicin alone against two types of bacteria P. mirabilis and K. pneumonia. The mixture of silver nanoparticles with gentamicin was produced to enhance the drug delivery method to inhibit the growth of K. pneumonia and P. mirabilis, and also prevent the formation of bacterial biofilms on foley catheters. The smartly hybrid nanocomposite displayed an improvement, suggesting that in the future its potential as a viable therapeutic strategy against P. mirabilis and K. pneumonia. Additionally, it could be a promising approach to avoid the growth of bacterial biofilm formation during urinary tract infections (UTIs).
期刊介绍:
Nano-Structures & Nano-Objects is a new journal devoted to all aspects of the synthesis and the properties of this new flourishing domain. The journal is devoted to novel architectures at the nano-level with an emphasis on new synthesis and characterization methods. The journal is focused on the objects rather than on their applications. However, the research for new applications of original nano-structures & nano-objects in various fields such as nano-electronics, energy conversion, catalysis, drug delivery and nano-medicine is also welcome. The scope of Nano-Structures & Nano-Objects involves: -Metal and alloy nanoparticles with complex nanostructures such as shape control, core-shell and dumbells -Oxide nanoparticles and nanostructures, with complex oxide/metal, oxide/surface and oxide /organic interfaces -Inorganic semi-conducting nanoparticles (quantum dots) with an emphasis on new phases, structures, shapes and complexity -Nanostructures involving molecular inorganic species such as nanoparticles of coordination compounds, molecular magnets, spin transition nanoparticles etc. or organic nano-objects, in particular for molecular electronics -Nanostructured materials such as nano-MOFs and nano-zeolites -Hetero-junctions between molecules and nano-objects, between different nano-objects & nanostructures or between nano-objects & nanostructures and surfaces -Methods of characterization specific of the nano size or adapted for the nano size such as X-ray and neutron scattering, light scattering, NMR, Raman, Plasmonics, near field microscopies, various TEM and SEM techniques, magnetic studies, etc .