氨基酸功能化磁性纳米颗粒对α乳清蛋白聚集的抗淀粉样蛋白活性

IF 5.45 Q1 Physics and Astronomy
Andrea Antosova , Miroslav Gancar , Zuzana Bednarikova , Iryna Antal , Patrizia Verducci , Olga Parmar , Martina Kubovcikova , Martina Koneracka , Vlasta Zavisova , Patrizio Graziosi , Barbara Luppi , Zuzana Gazova , Eva Bystrenova
{"title":"氨基酸功能化磁性纳米颗粒对α乳清蛋白聚集的抗淀粉样蛋白活性","authors":"Andrea Antosova ,&nbsp;Miroslav Gancar ,&nbsp;Zuzana Bednarikova ,&nbsp;Iryna Antal ,&nbsp;Patrizia Verducci ,&nbsp;Olga Parmar ,&nbsp;Martina Kubovcikova ,&nbsp;Martina Koneracka ,&nbsp;Vlasta Zavisova ,&nbsp;Patrizio Graziosi ,&nbsp;Barbara Luppi ,&nbsp;Zuzana Gazova ,&nbsp;Eva Bystrenova","doi":"10.1016/j.nanoso.2024.101413","DOIUrl":null,"url":null,"abstract":"<div><div>Protein amyloid aggregation involves structural changes in native protein conformers and the formation of amyloid fibrils that accumulate in deposits in the human body. This study explores the effect of magnetic nanoparticles functionalized with amino acids (aaMNPs)—cysteine (Cys), poly-L-lysine (PLL), or proline (Pro)—on the amyloid aggregation of α-lactalbumin (αLA) and its amyloid fibrils (LAF). Our results from thioflavin T fluorescence assay (ThT), atomic force microscopy (AFM), and infrared spectroscopy revealed that the studied aaMNPs inhibit αLA fibrillization and destruct LAF in a concentration-dependent manner. The type of amino acid used for nanoparticle functionalization significantly influences the anti-amyloid efficacy. ProMNPs exhibit the highest inhibitory activity, with the timing of their addition being crucial Conversely, CysMNPs demonstrate the highest destructing activity. AFM image analysis through grain mapping was employed to quantify the anti-amyloid effects of aaMNPs. Cytotoxicity testing on kidney cells identified PLLMNPs as the only cytotoxic nanoparticles in our study. These findings clarify the mechanisms of inhibition and destruction of LAF in the presence of aaMNPs, which could inform the design of nanoparticles for therapeutic purposes in the future.</div></div>","PeriodicalId":397,"journal":{"name":"Nano-Structures & Nano-Objects","volume":"40 ","pages":"Article 101413"},"PeriodicalIF":5.4500,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Anti-amyloid activity of amino acid functionalized magnetic nanoparticles on αLactalbumin aggregation\",\"authors\":\"Andrea Antosova ,&nbsp;Miroslav Gancar ,&nbsp;Zuzana Bednarikova ,&nbsp;Iryna Antal ,&nbsp;Patrizia Verducci ,&nbsp;Olga Parmar ,&nbsp;Martina Kubovcikova ,&nbsp;Martina Koneracka ,&nbsp;Vlasta Zavisova ,&nbsp;Patrizio Graziosi ,&nbsp;Barbara Luppi ,&nbsp;Zuzana Gazova ,&nbsp;Eva Bystrenova\",\"doi\":\"10.1016/j.nanoso.2024.101413\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Protein amyloid aggregation involves structural changes in native protein conformers and the formation of amyloid fibrils that accumulate in deposits in the human body. This study explores the effect of magnetic nanoparticles functionalized with amino acids (aaMNPs)—cysteine (Cys), poly-L-lysine (PLL), or proline (Pro)—on the amyloid aggregation of α-lactalbumin (αLA) and its amyloid fibrils (LAF). Our results from thioflavin T fluorescence assay (ThT), atomic force microscopy (AFM), and infrared spectroscopy revealed that the studied aaMNPs inhibit αLA fibrillization and destruct LAF in a concentration-dependent manner. The type of amino acid used for nanoparticle functionalization significantly influences the anti-amyloid efficacy. ProMNPs exhibit the highest inhibitory activity, with the timing of their addition being crucial Conversely, CysMNPs demonstrate the highest destructing activity. AFM image analysis through grain mapping was employed to quantify the anti-amyloid effects of aaMNPs. Cytotoxicity testing on kidney cells identified PLLMNPs as the only cytotoxic nanoparticles in our study. These findings clarify the mechanisms of inhibition and destruction of LAF in the presence of aaMNPs, which could inform the design of nanoparticles for therapeutic purposes in the future.</div></div>\",\"PeriodicalId\":397,\"journal\":{\"name\":\"Nano-Structures & Nano-Objects\",\"volume\":\"40 \",\"pages\":\"Article 101413\"},\"PeriodicalIF\":5.4500,\"publicationDate\":\"2024-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nano-Structures & Nano-Objects\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2352507X24003251\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Physics and Astronomy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano-Structures & Nano-Objects","FirstCategoryId":"1","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352507X24003251","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0

摘要

蛋白淀粉样蛋白聚集涉及天然蛋白构象的结构改变和淀粉样蛋白原纤维的形成,并在人体内沉积。本研究探讨了用氨基酸(aaMNPs)——半胱氨酸(Cys)、聚l -赖氨酸(PLL)或脯氨酸(Pro)功能化的磁性纳米颗粒对α-乳清蛋白(αLA)及其淀粉样原纤维(LAF)淀粉样蛋白聚集的影响。我们的硫黄素T荧光分析(ThT)、原子力显微镜(AFM)和红外光谱分析结果表明,所研究的aaMNPs以浓度依赖性的方式抑制αLA的成纤维并破坏LAF。用于纳米颗粒功能化的氨基酸类型显著影响抗淀粉样蛋白的功效。ProMNPs表现出最高的抑制活性,其添加时间至关重要。相反,CysMNPs表现出最高的破坏活性。通过颗粒图分析AFM图像来量化aaMNPs的抗淀粉样蛋白作用。肾细胞的细胞毒性测试鉴定PLLMNPs是我们研究中唯一的细胞毒性纳米颗粒。这些发现阐明了aaMNPs存在时抑制和破坏LAF的机制,这可能为未来用于治疗目的的纳米颗粒的设计提供信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Anti-amyloid activity of amino acid functionalized magnetic nanoparticles on αLactalbumin aggregation
Protein amyloid aggregation involves structural changes in native protein conformers and the formation of amyloid fibrils that accumulate in deposits in the human body. This study explores the effect of magnetic nanoparticles functionalized with amino acids (aaMNPs)—cysteine (Cys), poly-L-lysine (PLL), or proline (Pro)—on the amyloid aggregation of α-lactalbumin (αLA) and its amyloid fibrils (LAF). Our results from thioflavin T fluorescence assay (ThT), atomic force microscopy (AFM), and infrared spectroscopy revealed that the studied aaMNPs inhibit αLA fibrillization and destruct LAF in a concentration-dependent manner. The type of amino acid used for nanoparticle functionalization significantly influences the anti-amyloid efficacy. ProMNPs exhibit the highest inhibitory activity, with the timing of their addition being crucial Conversely, CysMNPs demonstrate the highest destructing activity. AFM image analysis through grain mapping was employed to quantify the anti-amyloid effects of aaMNPs. Cytotoxicity testing on kidney cells identified PLLMNPs as the only cytotoxic nanoparticles in our study. These findings clarify the mechanisms of inhibition and destruction of LAF in the presence of aaMNPs, which could inform the design of nanoparticles for therapeutic purposes in the future.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nano-Structures & Nano-Objects
Nano-Structures & Nano-Objects Physics and Astronomy-Condensed Matter Physics
CiteScore
9.20
自引率
0.00%
发文量
60
审稿时长
22 days
期刊介绍: Nano-Structures & Nano-Objects is a new journal devoted to all aspects of the synthesis and the properties of this new flourishing domain. The journal is devoted to novel architectures at the nano-level with an emphasis on new synthesis and characterization methods. The journal is focused on the objects rather than on their applications. However, the research for new applications of original nano-structures & nano-objects in various fields such as nano-electronics, energy conversion, catalysis, drug delivery and nano-medicine is also welcome. The scope of Nano-Structures & Nano-Objects involves: -Metal and alloy nanoparticles with complex nanostructures such as shape control, core-shell and dumbells -Oxide nanoparticles and nanostructures, with complex oxide/metal, oxide/surface and oxide /organic interfaces -Inorganic semi-conducting nanoparticles (quantum dots) with an emphasis on new phases, structures, shapes and complexity -Nanostructures involving molecular inorganic species such as nanoparticles of coordination compounds, molecular magnets, spin transition nanoparticles etc. or organic nano-objects, in particular for molecular electronics -Nanostructured materials such as nano-MOFs and nano-zeolites -Hetero-junctions between molecules and nano-objects, between different nano-objects & nanostructures or between nano-objects & nanostructures and surfaces -Methods of characterization specific of the nano size or adapted for the nano size such as X-ray and neutron scattering, light scattering, NMR, Raman, Plasmonics, near field microscopies, various TEM and SEM techniques, magnetic studies, etc .
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信