MatterPub Date : 2024-12-04DOI: 10.1016/j.matt.2024.08.016
Ye Li , Chujun Ni , Ruijue Cao , Yongbo Jiang , Lianlian Xia , Hua Ren , Ying Chen , Tao Xie , Qian Zhao
{"title":"Sprayable porous hydrogel coating for efficient and sustainable evaporative cooling","authors":"Ye Li , Chujun Ni , Ruijue Cao , Yongbo Jiang , Lianlian Xia , Hua Ren , Ying Chen , Tao Xie , Qian Zhao","doi":"10.1016/j.matt.2024.08.016","DOIUrl":"10.1016/j.matt.2024.08.016","url":null,"abstract":"<div><div>Liquid spray cooling is extensively used in the thermal management of power electronics. Direct water spraying is simple but unavoidably results in substantial water waste. Enhancing water retention via hydrogel coatings can reduce water consumption, but current nonporous coatings suffer from slow water rehydration. Here, we present a spray-coating process that enables rapid <em>in situ</em> formation of a porous hydrogel coating. Mixed powders of polyvinyl alcohol (PVA) and tannic acid (TA) are sprayed, followed by a glutaraldehyde (GA) aqueous solution. A unique dual-step gelation yields a mechanically robust porous coating originated from the stacking of the powders. When used as the cooling layer, the porosity drastically enables faster water rehydration for prolonged cooling and simultaneously enhances the evaporation rate for more effective thermal management. This simple and scalable approach can be applied to diverse substrates with complex geometries, and the underlying principle can be extended to other cooling liquids.</div></div>","PeriodicalId":388,"journal":{"name":"Matter","volume":"7 12","pages":"Pages 4270-4280"},"PeriodicalIF":17.3,"publicationDate":"2024-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142277088","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
MatterPub Date : 2024-12-04DOI: 10.1016/j.matt.2024.08.014
Steve Kench , Isaac Squires , Amir Dahari , Ferran Brosa Planella , Scott A. Roberts , Samuel J. Cooper
{"title":"Li-ion battery design through microstructural optimization using generative AI","authors":"Steve Kench , Isaac Squires , Amir Dahari , Ferran Brosa Planella , Scott A. Roberts , Samuel J. Cooper","doi":"10.1016/j.matt.2024.08.014","DOIUrl":"10.1016/j.matt.2024.08.014","url":null,"abstract":"<div><div>Lithium-ion batteries are used across various applications, necessitating tailored cell designs to enhance performance. Optimizing electrode manufacturing parameters is a key route to achieving this, as these parameters directly influence the microstructure and performance of the cells. However, linking process parameters to performance is complex, and experimental or modeling campaigns are often slow and expensive. This study introduces a fast computational optimization framework for electrode manufacturing parameters. A generative model, trained on a small dataset of microstructural images associated with different manufacturing parameters, efficiently generates representative microstructures for new parameters. This model is integrated into a Bayesian optimization loop that includes microstructure generation, characterization, and simulation, aiming to find optimal manufacturing parameters for a particular application. Significant improvement in the energy density of a 4680 cell is achieved through bespoke cell design, highlighting the importance of cell-scale normalization. The framework’s modularity allows its application to various advanced materials manufacturing scenarios.</div></div>","PeriodicalId":388,"journal":{"name":"Matter","volume":"7 12","pages":"Pages 4260-4269"},"PeriodicalIF":17.3,"publicationDate":"2024-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142277089","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
MatterPub Date : 2024-11-06DOI: 10.1016/j.matt.2024.08.008
Yaning Ma , Zihan Zhao , Zhiran Zheng , Jiawei Li , Min-Hui Li , Jun Hu
{"title":"High-performance poly(thioctic acid)-based thermosets featuring upcycling ability for in situ foaming enabled by dual-dynamic networks","authors":"Yaning Ma , Zihan Zhao , Zhiran Zheng , Jiawei Li , Min-Hui Li , Jun Hu","doi":"10.1016/j.matt.2024.08.008","DOIUrl":"10.1016/j.matt.2024.08.008","url":null,"abstract":"<div><div>Polymers constructed from natural thioctic acid (TA) provide a solution for the development of sustainable materials. However, their inherent weak networks make them difficult to use in engineering materials featuring high durability and mechanical robustness. In this work, the autocatalytic dual-dynamic covalent adaptable networks (CANs) are devised by curing diglycidyl 4,5-epoxycyclohexane-1,2-dicarboxylate (DGEDC) with TA and bis(<em>p</em>-aminocyclohexyl)methane (PACM). The resulting DGEDC/TA/PACM thermosets exhibit good mechanical and thermal properties (<em>T</em><sub><em>g</em></sub> of 145°C, <em>T</em><sub><em>d5%</em></sub> of 289°C, tensile strength of 70 MPa, Young’s modulus of 2.25 GPa), higher than previous poly(thioctic acid)-based materials. Due to topological network rearrangements induced by the exchange of disulfide bonds and tertiary amine-catalyzed transesterification reactions, they can be easily reshaped and repaired. Furthermore, they can be degraded mildly and upcycled into polyurethane foam by <em>in situ</em> foaming. This strategy of autocatalytic dual-dynamic CANs will inspire the development of practical applications of poly(thioctic acid).</div></div>","PeriodicalId":388,"journal":{"name":"Matter","volume":"7 11","pages":"Pages 4046-4058"},"PeriodicalIF":17.3,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142158695","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
MatterPub Date : 2024-11-06DOI: 10.1016/j.matt.2024.08.002
Xun Guo , Hu Hong , Qing Li , Jiaxiong Zhu , Zhuoxi Wu , Yanbo Wang , Shuo Yang , Zhaodong Huang , Yan Huang , Nan Li , Chunyi Zhi
{"title":"Dual robust electrode-electrolyte interfaces enabled by fluorinated electrolyte for high-performance zinc metal batteries","authors":"Xun Guo , Hu Hong , Qing Li , Jiaxiong Zhu , Zhuoxi Wu , Yanbo Wang , Shuo Yang , Zhaodong Huang , Yan Huang , Nan Li , Chunyi Zhi","doi":"10.1016/j.matt.2024.08.002","DOIUrl":"10.1016/j.matt.2024.08.002","url":null,"abstract":"<div><div>Rechargeable zinc metal batteries (ZMBs) are promising for fabricating low-cost, safe, and high-energy-density storage systems. However, ZMBs typically undergo interfacial side reactions and cathode dissolution during cycling, resulting in the depletion of active materials and performance decay of batteries. Here, we develop a localized high-concentration fluorinated electrolyte featuring a high fluorine/oxygen atomic ratio (388.72%) with beneficial solvation chemistry, fostering the simultaneous formation of a cathode-electrolyte interphase (CEI) enriched with C–F bonds and a ZnF<sub>2</sub>-dominant solid-electrolyte interphase (SEI). The constructed robust electrode-electrolyte interfaces (EEIs) contribute to dendrite-free zinc deposition and a highly stable cathode, demonstrating soft-packed Zn||Mn-doped V<sub>2</sub>O<sub>5</sub> batteries with an exceptional energy density (91.25 Wh kg<sup>−1</sup><sub>cathode+anode</sub>) and capacity retention (90.5%) over 500 cycles employing a limited zinc supply. The anode-free ZMBs deliver a record power density of 153.9 Wh kg<sup>−1</sup><sub>cathode+anode</sub> with a high capacity retention of 80.2% over 1,500 cycles. This research provides significant insights for interface construction in multivalent ion batteries.</div></div>","PeriodicalId":388,"journal":{"name":"Matter","volume":"7 11","pages":"Pages 4014-4030"},"PeriodicalIF":17.3,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142221114","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
MatterPub Date : 2024-11-06DOI: 10.1016/j.matt.2024.09.009
Yizhe Shao , Chao Dang , Haobo Qi , Ziyang Liu , Haoran Pei , Tongqing Lu , Wei Zhai
{"title":"Polyfunctional eutectogels with multiple hydrogen-bond-shielded amorphous networks for soft ionotronics","authors":"Yizhe Shao , Chao Dang , Haobo Qi , Ziyang Liu , Haoran Pei , Tongqing Lu , Wei Zhai","doi":"10.1016/j.matt.2024.09.009","DOIUrl":"10.1016/j.matt.2024.09.009","url":null,"abstract":"<div><div>Eutectogels, consisting of three-dimensional polymeric networks saturated with deep eutectic solvents (DESs), present a promising option for soft ionic conductors. Instead of modifying polymer chains, we propose a new DES system comprising phytic acid (PA) and choline chloride (ChCl), which enhances dynamic and interactive bonding with polymeric networks to create innovative eutectogels. Here, we develop polyfunctional eutectogels (PETGs) by encapsulating polyvinyl alcohol (PVA) networks with our DES using an evaporation-induced confinement strategy. Experimental validation and numerical calculations demonstrate that PA forms high-density dynamic hydrogen bonds with PVA while shielding hydrogen bonds between PVA chains. This results in a multiple hydrogen-bond-shielded amorphous network (MHSN) with undetectable crystalline regions, thereby promoting ion migration to ensure high conductivity. Moreover, our PETG exhibits rapid self-healing, freeze resistance, self-adhesion, antibacterial properties, and dual sensitivities attributable to the MHSN. We demonstrate the potential of PETGs for applications in motion sensing, machine learning, human-machine interaction, and energy harvesting.</div></div>","PeriodicalId":388,"journal":{"name":"Matter","volume":"7 11","pages":"Pages 4076-4098"},"PeriodicalIF":17.3,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142369529","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
MatterPub Date : 2024-11-06DOI: 10.1016/j.matt.2024.06.050
Cong Chen , Zhenjia Chen , Di Liu , Xianghong Zhang , Changsong Gao , Liuting Shan , Lujian Liu , Tianjian Chen , Tailiang Guo , Huipeng Chen
{"title":"Three-terminal quantum dot light-emitting synapse with active adaptive photoelectric outputs for complex image processing/parallel computing","authors":"Cong Chen , Zhenjia Chen , Di Liu , Xianghong Zhang , Changsong Gao , Liuting Shan , Lujian Liu , Tianjian Chen , Tailiang Guo , Huipeng Chen","doi":"10.1016/j.matt.2024.06.050","DOIUrl":"10.1016/j.matt.2024.06.050","url":null,"abstract":"<div><div>Machine vision enables machines to extract rich information from image or video data and make intelligent decisions. However, approaches using artificial synapse hardware systems significantly limit the real-time and accuracy in machine vision segmentation amid complex environments. Addressing this, we propose a novel three-terminal adaptive artificial-light-emitting synapse (AALS) capable of photoelectric double output along with adaptive behavior. The device uses silver nanowires (AgNWs) as polar conductive bridges to reduce reliance on transparent electrodes, while polyvinyl alcohol (PVA) dielectric layers adaptively modulate charge carrier concentrations in conductive channels. Additionally, we have designed an adaptive parallel neural network (APNN) and applied it to autonomous driving image processing. This innovation significantly reduces adaptation time and notably enhances mean pixel accuracy (MPA) for semantic segmentation under overexposure and low-light conditions by 142.2% and 304.4%, respectively. Therefore, this work introduces new strategies for advanced adaptive vision, promising significant potential in intelligent driving and neuromorphic computing.</div></div>","PeriodicalId":388,"journal":{"name":"Matter","volume":"7 11","pages":"Pages 3891-3906"},"PeriodicalIF":17.3,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141895932","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
MatterPub Date : 2024-11-06DOI: 10.1016/j.matt.2024.07.018
Jingxian Li , Anirudh Appachar , Sabrina L. Peczonczyk , Elisa T. Harrison , Anton V. Ievlev , Ryan Hood , Dongjae Shin , Sangmin Yoo , Brianna Roest , Kai Sun , Karsten Beckmann , Olya Popova , Tony Chiang , William S. Wahby , Robin B. Jacobs-Godrim , Matthew J. Marinella , Petro Maksymovych , John T. Heron , Nathaniel Cady , Wei D. Lu , Yiyang Li
{"title":"Thermodynamic origin of nonvolatility in resistive memory","authors":"Jingxian Li , Anirudh Appachar , Sabrina L. Peczonczyk , Elisa T. Harrison , Anton V. Ievlev , Ryan Hood , Dongjae Shin , Sangmin Yoo , Brianna Roest , Kai Sun , Karsten Beckmann , Olya Popova , Tony Chiang , William S. Wahby , Robin B. Jacobs-Godrim , Matthew J. Marinella , Petro Maksymovych , John T. Heron , Nathaniel Cady , Wei D. Lu , Yiyang Li","doi":"10.1016/j.matt.2024.07.018","DOIUrl":"10.1016/j.matt.2024.07.018","url":null,"abstract":"<div><div>Electronic switches based on the migration of high-density point defects, or memristors, are poised to revolutionize post-digital electronics. Despite significant research, key mechanisms for filament formation and oxygen transport remain unresolved, hindering our ability to predict and design device properties. For example, experiments have achieved 10 orders of magnitude longer retention times than predicted by current models. Here, using electrical measurements, scanning probe microscopy, and first-principles calculations on tantalum oxide memristors, we reveal that the formation and stability of conductive filaments crucially depend on the thermodynamic stability of the amorphous oxygen-rich and oxygen-poor compounds, which undergo composition phase separation. Including the previously neglected effects of this amorphous phase separation reconciles unexplained discrepancies in retention and enables predictive design of key performance indicators such as retention stability. This result emphasizes non-ideal thermodynamic interactions as key design criteria in post-digital devices with defect densities substantially exceeding those of today’s covalent semiconductors.</div></div>","PeriodicalId":388,"journal":{"name":"Matter","volume":"7 11","pages":"Pages 3970-3993"},"PeriodicalIF":17.3,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142085334","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
MatterPub Date : 2024-11-06DOI: 10.1016/j.matt.2024.08.010
Alissa C. Johnson , Alice S. Fontaine , Emily A. Beeman , William J. Townsend , James H. Pikul
{"title":"Emulsions that store oxygen for fast ORR kinetics and multifunctional robotic and mobility systems","authors":"Alissa C. Johnson , Alice S. Fontaine , Emily A. Beeman , William J. Townsend , James H. Pikul","doi":"10.1016/j.matt.2024.08.010","DOIUrl":"10.1016/j.matt.2024.08.010","url":null,"abstract":"<div><div>Human circulatory systems store large concentrations of oxygen and provide it continuously and simultaneously to trillions of cells without the need for each cell to access the surrounding environment. Inspired by biological circulatory systems, we envision future robotic systems with multifunctional, fully integrated, air-rechargeable energy delivery and storage. We present an aqueous air catholyte emulsion (ACE) with high oxygen solubility that can derive energy entirely from dissolved oxygen. With only 20% silicone oil by volume, ACEs can store twice as much dissolved oxygen (15 mg/L) as pure KOH samples, remain stable for several months, and show superior oxygen reduction reaction kinetics compared to KOH. Zinc-air flow cells with fully submerged electrodes can achieve 4.6 mW/cm<sup>2</sup> at 5.6 mA/cm<sup>2</sup>. A multifunctional actuator flow cell configuration employs an ACE as both a hydraulic actuator and an energy storage fluid, demonstrating the feasibility of ACEs as multifunctional, flexible power sources for soft robotic systems.</div></div>","PeriodicalId":388,"journal":{"name":"Matter","volume":"7 11","pages":"Pages 4059-4075"},"PeriodicalIF":17.3,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142161142","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
MatterPub Date : 2024-11-06DOI: 10.1016/j.matt.2024.07.007
Keyi Chen , Wujie Qiu , Meng Lei , Chuanzhong Lai , Jianjun Liu , Chilin Li
{"title":"Manipulating cation-anion coordination in fire-retardant electrolytes to enable high-areal-capacity fluoride conversion batteries","authors":"Keyi Chen , Wujie Qiu , Meng Lei , Chuanzhong Lai , Jianjun Liu , Chilin Li","doi":"10.1016/j.matt.2024.07.007","DOIUrl":"10.1016/j.matt.2024.07.007","url":null,"abstract":"<div><div>Resource-abundant and multi-redox iron fluorides are considered promising cathodes for large-scale battery systems. However, existing research often overlooks the critical issues at the fluoride-electrolyte interface that cause voltage plateau blurring and capacity degradation. Here, we propose an interfacial engineering strategy for the conversion-type FeF<sub>3</sub> cathode enabled by manipulating the cation-anion coordination in a fire-retardant electrolyte. Lithium difluoro(oxalato)borate has strong electron affinity and induces an anion-rich inner solvation sheath, thereby dominating the construction of the cathode-electrolyte interphase (CEI). The inorganic-enriched CEI layer features electron insulation and facile mass transport, which could suppress interfacial parasitic reactions and promote fluoride structural reversibility. The Li-FeF<sub>3</sub> cell enables well-preserved voltage plateaus and a high capacity of 412 mAh g<sup>−1</sup> with inspiring cycle durability. The superior electrolyte wettability further contributes to a reversible areal capacity as high as 2.94 mAh cm<sup>−2</sup> for fluoride cathode under high FeF<sub>3</sub> mass loading of ∼7.0 mg cm<sup>−2</sup> and lean electrolyte conditions.</div></div>","PeriodicalId":388,"journal":{"name":"Matter","volume":"7 11","pages":"Pages 3907-3931"},"PeriodicalIF":17.3,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142023058","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}