Hydrogen bonding networks for tunable organic neuromorphic transistor arrays and in-sensor computing

IF 17.3 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Matter Pub Date : 2025-06-02 DOI:10.1016/j.matt.2025.102192
Tiantian Zhou, Feifan Zhang, Jiandong Gao, Kaiming Nie, Gen Li, Wanxin Huang, Ruiheng Wang, Guofeng Tian, Haifeng Ling, Hongzhen Lin, Yan Zhao, Hui Yang, Jiangtao Xu, Deyang Ji, Wenping Hu
{"title":"Hydrogen bonding networks for tunable organic neuromorphic transistor arrays and in-sensor computing","authors":"Tiantian Zhou, Feifan Zhang, Jiandong Gao, Kaiming Nie, Gen Li, Wanxin Huang, Ruiheng Wang, Guofeng Tian, Haifeng Ling, Hongzhen Lin, Yan Zhao, Hui Yang, Jiangtao Xu, Deyang Ji, Wenping Hu","doi":"10.1016/j.matt.2025.102192","DOIUrl":null,"url":null,"abstract":"Inspired by neural architectures, synaptic transistors incorporating sensing, memory, and computing functionalities within one device have garnered widespread attention. However, achieving high carrier mobility and enduring synaptic plasticity remains challenging due to the unbalanced charge trapping effect at the dielectric/semiconductor interface. Here, introducing the hydrogen bonding networks, constructed via double dielectric materials, significantly improves the interface characteristics. This approach could modulate the carrier mobility of fabricated synaptic transistors from 0.49 to 22 cm<sup>2</sup> V<sup>−1</sup> s<sup>−1</sup> and increase synaptic plasticity from 67 to 10,000 s with an ultra-low energy consumption of 24 aJ per synaptic event. Moreover, we have devised an innovative linear self-attention-based spatial and channel joint attention (LSSCA) network architecture for spiking neural networks (SNNs) that exploits synaptic transistors to enhance image classification accuracy from 76% to 99%. This study provides a direct and effective strategy for engineering optically controlled synaptic transistors that demonstrate superior carrier mobility and prolonged plasticity, promising potential in low-energy, high-precision neuromorphic applications.","PeriodicalId":388,"journal":{"name":"Matter","volume":"161 1","pages":""},"PeriodicalIF":17.3000,"publicationDate":"2025-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Matter","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.matt.2025.102192","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Inspired by neural architectures, synaptic transistors incorporating sensing, memory, and computing functionalities within one device have garnered widespread attention. However, achieving high carrier mobility and enduring synaptic plasticity remains challenging due to the unbalanced charge trapping effect at the dielectric/semiconductor interface. Here, introducing the hydrogen bonding networks, constructed via double dielectric materials, significantly improves the interface characteristics. This approach could modulate the carrier mobility of fabricated synaptic transistors from 0.49 to 22 cm2 V−1 s−1 and increase synaptic plasticity from 67 to 10,000 s with an ultra-low energy consumption of 24 aJ per synaptic event. Moreover, we have devised an innovative linear self-attention-based spatial and channel joint attention (LSSCA) network architecture for spiking neural networks (SNNs) that exploits synaptic transistors to enhance image classification accuracy from 76% to 99%. This study provides a direct and effective strategy for engineering optically controlled synaptic transistors that demonstrate superior carrier mobility and prolonged plasticity, promising potential in low-energy, high-precision neuromorphic applications.

Abstract Image

用于可调谐有机神经形态晶体管阵列和传感器内计算的氢键网络
受神经结构的启发,突触晶体管在一个设备中集成了传感、记忆和计算功能,引起了广泛的关注。然而,由于介电/半导体界面上不平衡的电荷捕获效应,实现高载流子迁移率和持久的突触可塑性仍然具有挑战性。通过引入双介质材料构建的氢键网络,显著改善了界面特性。这种方法可以将制造的突触晶体管的载流子迁移率从0.49到22 cm2 V−1 s−1,并将突触可塑性从67增加到10,000 s,每个突触事件的超低能耗为24 aJ。此外,我们为尖峰神经网络(snn)设计了一种创新的基于线性自注意的空间和通道联合注意(LSSCA)网络架构,该架构利用突触晶体管将图像分类准确率从76%提高到99%。该研究为工程光控突触晶体管提供了一种直接而有效的策略,这种晶体管具有优越的载流子迁移率和长时间的可塑性,在低能量、高精度的神经形态应用中具有广阔的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Matter
Matter MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
26.30
自引率
2.60%
发文量
367
期刊介绍: Matter, a monthly journal affiliated with Cell, spans the broad field of materials science from nano to macro levels,covering fundamentals to applications. Embracing groundbreaking technologies,it includes full-length research articles,reviews, perspectives,previews, opinions, personnel stories, and general editorial content. Matter aims to be the primary resource for researchers in academia and industry, inspiring the next generation of materials scientists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信