Ultra-strong skin-core polymer aerogel fibers via wet-freeze spinning

IF 17.3 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Matter Pub Date : 2025-05-19 DOI:10.1016/j.matt.2025.102155
Tiantian Xue, Jingyuan Tang, Chang Liu, Longsheng Zhang, Chao Zhang, Wei Fan, T.X. Liu
{"title":"Ultra-strong skin-core polymer aerogel fibers via wet-freeze spinning","authors":"Tiantian Xue, Jingyuan Tang, Chang Liu, Longsheng Zhang, Chao Zhang, Wei Fan, T.X. Liu","doi":"10.1016/j.matt.2025.102155","DOIUrl":null,"url":null,"abstract":"Aerogel fibers, as synthetic fibers with a three-dimensional (3D) porous structure, outperform traditional fibers in thermal management. However, they still face the challenge of balancing mechanical properties and thermal insulation to fully realize their potential. Here, we report a wet-freeze spinning technique for the continuous, large-scale preparation of dense skin-porous core-structured polyimide aerogel fibers. The unique multiscale structural design, which includes a highly oriented dense skin layer to withstand load stresses and a porous core to impede heat transfer, achieves exceptionally high strength and low thermal conductivity. The resulting robust skin-core polyimide (SCPI) aerogel fibers exhibit ultrahigh specific strength up to 775.8 MPa cm<sup>3</sup> g<sup>−1</sup>, much higher than previously reported aerogel fibers. Moreover, the obtained aerogel fabrics demonstrate excellent thermal insulation properties (30.4 mW m<sup>−1</sup> K<sup>−1</sup>) under long-term thermal shock. This strategy offers a universal and continuous way to prepare high-strength aerogel fibers and is crucial for promoting the fiber industry.","PeriodicalId":388,"journal":{"name":"Matter","volume":"54 1","pages":""},"PeriodicalIF":17.3000,"publicationDate":"2025-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Matter","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.matt.2025.102155","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Aerogel fibers, as synthetic fibers with a three-dimensional (3D) porous structure, outperform traditional fibers in thermal management. However, they still face the challenge of balancing mechanical properties and thermal insulation to fully realize their potential. Here, we report a wet-freeze spinning technique for the continuous, large-scale preparation of dense skin-porous core-structured polyimide aerogel fibers. The unique multiscale structural design, which includes a highly oriented dense skin layer to withstand load stresses and a porous core to impede heat transfer, achieves exceptionally high strength and low thermal conductivity. The resulting robust skin-core polyimide (SCPI) aerogel fibers exhibit ultrahigh specific strength up to 775.8 MPa cm3 g−1, much higher than previously reported aerogel fibers. Moreover, the obtained aerogel fabrics demonstrate excellent thermal insulation properties (30.4 mW m−1 K−1) under long-term thermal shock. This strategy offers a universal and continuous way to prepare high-strength aerogel fibers and is crucial for promoting the fiber industry.

Abstract Image

超强皮芯聚合物气凝胶纤维通过湿冻纺丝
气凝胶纤维作为一种具有三维多孔结构的合成纤维,在热管理方面优于传统纤维。然而,它们仍然面临着平衡机械性能和隔热性能以充分发挥其潜力的挑战。在这里,我们报告了一种连续、大规模制备致密皮肤多孔核结构聚酰亚胺气凝胶纤维的湿冻纺丝技术。独特的多尺度结构设计,包括一个高度定向的致密皮肤层,以承受负载应力和多孔芯,以阻止热传递,实现了异常高的强度和低导热性。由此产生的坚固的皮芯聚酰亚胺(SCPI)气凝胶纤维具有超高的比强度,高达775.8 MPa cm3 g−1,远远高于先前报道的气凝胶纤维。此外,所得的气凝胶织物在长期热冲击下表现出优异的隔热性能(30.4 mW m−1 K−1)。该策略为制备高强度气凝胶纤维提供了一种通用和连续的方法,对促进纤维工业的发展至关重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Matter
Matter MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
26.30
自引率
2.60%
发文量
367
期刊介绍: Matter, a monthly journal affiliated with Cell, spans the broad field of materials science from nano to macro levels,covering fundamentals to applications. Embracing groundbreaking technologies,it includes full-length research articles,reviews, perspectives,previews, opinions, personnel stories, and general editorial content. Matter aims to be the primary resource for researchers in academia and industry, inspiring the next generation of materials scientists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信