Xiege Huang, Luoqi Wu, Mingyuan Hu, Xiaobin Feng, Pengcheng Zhai, Wenjuan Li, Bo Duan, Jiaqing He, Guodong Li, Qingjie Zhang, William A. Goddard
{"title":"柔性Bi2Te3中错开层诱导的弹性强化机制","authors":"Xiege Huang, Luoqi Wu, Mingyuan Hu, Xiaobin Feng, Pengcheng Zhai, Wenjuan Li, Bo Duan, Jiaqing He, Guodong Li, Qingjie Zhang, William A. Goddard","doi":"10.1016/j.matt.2025.102166","DOIUrl":null,"url":null,"abstract":"Wearable flexible devices require the development of thermoelectric (TE) materials with high strength, excellent elastic bendability, and superior ductility. Here we report a staggered-layer strategy that overcomes the strength-flexibility dilemma. Our findings indicate that the newly formed strong Bi–Bi covalent bond between the staggered layer leads to an average 40% increase in the bond energy of the van der Waals Te–Te bond. A large Poisson’s ratio leads to a high maximum linear elastic strain (<span><span style=\"\"></span><span data-mathml='<math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow is=\"true\"><msubsup is=\"true\"><mi is=\"true\">&#x3B5;</mi><mi is=\"true\">E</mi><mi mathvariant=\"italic\" is=\"true\">max</mi></msubsup></mrow></math>' role=\"presentation\" style=\"font-size: 90%; display: inline-block; position: relative;\" tabindex=\"0\"><svg aria-hidden=\"true\" focusable=\"false\" height=\"2.663ex\" role=\"img\" style=\"vertical-align: -0.928ex;\" viewbox=\"0 -747.2 1966.9 1146.6\" width=\"4.568ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><g is=\"true\"><g is=\"true\"><g is=\"true\"><use xlink:href=\"#MJMATHI-3B5\"></use></g><g is=\"true\" transform=\"translate(466,352)\"><use transform=\"scale(0.707)\" xlink:href=\"#MJMATHI-6D\"></use><use transform=\"scale(0.707)\" x=\"878\" xlink:href=\"#MJMATHI-61\" y=\"0\"></use><use transform=\"scale(0.707)\" x=\"1408\" xlink:href=\"#MJMATHI-78\" y=\"0\"></use></g><g is=\"true\" transform=\"translate(466,-318)\"><use transform=\"scale(0.707)\" xlink:href=\"#MJMATHI-45\"></use></g></g></g></g></svg><span role=\"presentation\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow is=\"true\"><msubsup is=\"true\"><mi is=\"true\">ε</mi><mi is=\"true\">E</mi><mi is=\"true\" mathvariant=\"italic\">max</mi></msubsup></mrow></math></span></span><script type=\"math/mml\"><math><mrow is=\"true\"><msubsup is=\"true\"><mi is=\"true\">ε</mi><mi is=\"true\">E</mi><mi mathvariant=\"italic\" is=\"true\">max</mi></msubsup></mrow></math></script></span>), enhancing shear strength by 83.3%, which is consistent with a 92.2% increase in micro-pillar compressive strength. The narrow stiffness gap and bond energy gap facilitate the coordinated deformation that maintains sustained linear elasticity during compression. Moreover, the low BFCs of the Te–Te and Te–Bi bonds (0.72 eV/Å<sup>2</sup> and 3.85 eV/Å<sup>2</sup>) contribute to the experimentally observed bending flexibility. This staggered-layer-induced elasticity strengthening mechanism offers a promising strategy for the rational design of highly reliable wearable TE devices.","PeriodicalId":388,"journal":{"name":"Matter","volume":"1 1","pages":""},"PeriodicalIF":17.3000,"publicationDate":"2025-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The staggered-layer induced elasticity strengthening mechanism in flexible Bi2Te3\",\"authors\":\"Xiege Huang, Luoqi Wu, Mingyuan Hu, Xiaobin Feng, Pengcheng Zhai, Wenjuan Li, Bo Duan, Jiaqing He, Guodong Li, Qingjie Zhang, William A. Goddard\",\"doi\":\"10.1016/j.matt.2025.102166\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Wearable flexible devices require the development of thermoelectric (TE) materials with high strength, excellent elastic bendability, and superior ductility. Here we report a staggered-layer strategy that overcomes the strength-flexibility dilemma. Our findings indicate that the newly formed strong Bi–Bi covalent bond between the staggered layer leads to an average 40% increase in the bond energy of the van der Waals Te–Te bond. A large Poisson’s ratio leads to a high maximum linear elastic strain (<span><span style=\\\"\\\"></span><span data-mathml='<math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow is=\\\"true\\\"><msubsup is=\\\"true\\\"><mi is=\\\"true\\\">&#x3B5;</mi><mi is=\\\"true\\\">E</mi><mi mathvariant=\\\"italic\\\" is=\\\"true\\\">max</mi></msubsup></mrow></math>' role=\\\"presentation\\\" style=\\\"font-size: 90%; display: inline-block; position: relative;\\\" tabindex=\\\"0\\\"><svg aria-hidden=\\\"true\\\" focusable=\\\"false\\\" height=\\\"2.663ex\\\" role=\\\"img\\\" style=\\\"vertical-align: -0.928ex;\\\" viewbox=\\\"0 -747.2 1966.9 1146.6\\\" width=\\\"4.568ex\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g fill=\\\"currentColor\\\" stroke=\\\"currentColor\\\" stroke-width=\\\"0\\\" transform=\\\"matrix(1 0 0 -1 0 0)\\\"><g is=\\\"true\\\"><g is=\\\"true\\\"><g is=\\\"true\\\"><use xlink:href=\\\"#MJMATHI-3B5\\\"></use></g><g is=\\\"true\\\" transform=\\\"translate(466,352)\\\"><use transform=\\\"scale(0.707)\\\" xlink:href=\\\"#MJMATHI-6D\\\"></use><use transform=\\\"scale(0.707)\\\" x=\\\"878\\\" xlink:href=\\\"#MJMATHI-61\\\" y=\\\"0\\\"></use><use transform=\\\"scale(0.707)\\\" x=\\\"1408\\\" xlink:href=\\\"#MJMATHI-78\\\" y=\\\"0\\\"></use></g><g is=\\\"true\\\" transform=\\\"translate(466,-318)\\\"><use transform=\\\"scale(0.707)\\\" xlink:href=\\\"#MJMATHI-45\\\"></use></g></g></g></g></svg><span role=\\\"presentation\\\"><math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow is=\\\"true\\\"><msubsup is=\\\"true\\\"><mi is=\\\"true\\\">ε</mi><mi is=\\\"true\\\">E</mi><mi is=\\\"true\\\" mathvariant=\\\"italic\\\">max</mi></msubsup></mrow></math></span></span><script type=\\\"math/mml\\\"><math><mrow is=\\\"true\\\"><msubsup is=\\\"true\\\"><mi is=\\\"true\\\">ε</mi><mi is=\\\"true\\\">E</mi><mi mathvariant=\\\"italic\\\" is=\\\"true\\\">max</mi></msubsup></mrow></math></script></span>), enhancing shear strength by 83.3%, which is consistent with a 92.2% increase in micro-pillar compressive strength. The narrow stiffness gap and bond energy gap facilitate the coordinated deformation that maintains sustained linear elasticity during compression. Moreover, the low BFCs of the Te–Te and Te–Bi bonds (0.72 eV/Å<sup>2</sup> and 3.85 eV/Å<sup>2</sup>) contribute to the experimentally observed bending flexibility. This staggered-layer-induced elasticity strengthening mechanism offers a promising strategy for the rational design of highly reliable wearable TE devices.\",\"PeriodicalId\":388,\"journal\":{\"name\":\"Matter\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":17.3000,\"publicationDate\":\"2025-05-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Matter\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1016/j.matt.2025.102166\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Matter","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.matt.2025.102166","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
可穿戴柔性器件要求开发具有高强度、优异弹性弯曲性和延展性的热电(TE)材料。在这里,我们报告了一种克服强度-灵活性困境的交错层策略。我们的研究结果表明,交错层之间新形成的强Bi-Bi共价键导致van der Waals Te-Te键的键能平均增加40%。泊松比越大,最大线弹性应变(εEmaxεEmax)越高,抗剪强度提高83.3%,微柱抗压强度提高92.2%。窄的刚度间隙和键能间隙有利于协调变形,在压缩过程中保持持续的线弹性。此外,Te-Te和Te-Bi键的低BFCs (0.72 eV/Å2和3.85 eV/Å2)有助于实验观察到的弯曲柔韧性。这种交错层诱导的弹性增强机制为合理设计高可靠性可穿戴TE器件提供了一种有前景的策略。
The staggered-layer induced elasticity strengthening mechanism in flexible Bi2Te3
Wearable flexible devices require the development of thermoelectric (TE) materials with high strength, excellent elastic bendability, and superior ductility. Here we report a staggered-layer strategy that overcomes the strength-flexibility dilemma. Our findings indicate that the newly formed strong Bi–Bi covalent bond between the staggered layer leads to an average 40% increase in the bond energy of the van der Waals Te–Te bond. A large Poisson’s ratio leads to a high maximum linear elastic strain (), enhancing shear strength by 83.3%, which is consistent with a 92.2% increase in micro-pillar compressive strength. The narrow stiffness gap and bond energy gap facilitate the coordinated deformation that maintains sustained linear elasticity during compression. Moreover, the low BFCs of the Te–Te and Te–Bi bonds (0.72 eV/Å2 and 3.85 eV/Å2) contribute to the experimentally observed bending flexibility. This staggered-layer-induced elasticity strengthening mechanism offers a promising strategy for the rational design of highly reliable wearable TE devices.
期刊介绍:
Matter, a monthly journal affiliated with Cell, spans the broad field of materials science from nano to macro levels,covering fundamentals to applications. Embracing groundbreaking technologies,it includes full-length research articles,reviews, perspectives,previews, opinions, personnel stories, and general editorial content.
Matter aims to be the primary resource for researchers in academia and industry, inspiring the next generation of materials scientists.