利用软物质的巨磁弹性进行声波能量收集

IF 17.3 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Matter Pub Date : 2025-05-28 DOI:10.1016/j.matt.2025.102156
Junyi Yin, Shaolei Wang, Jing Xu, Xun Zhao, Guorui Chen, Xiao Xiao, Jun Chen
{"title":"利用软物质的巨磁弹性进行声波能量收集","authors":"Junyi Yin, Shaolei Wang, Jing Xu, Xun Zhao, Guorui Chen, Xiao Xiao, Jun Chen","doi":"10.1016/j.matt.2025.102156","DOIUrl":null,"url":null,"abstract":"To address the challenge of recycling energy from low-density acoustic waves found in everyday sounds such as speech and music, we developed a soft acoustic energy harvester based on the giant magnetoelastic effect. This harvester efficiently captures energy from various environmental sound sources. It operates by combining the giant magnetoelastic effect with a spray-coating and magnetic pre-orientation process, enabling it to convert multi-directional acoustic waves into electrical energy across a wide frequency range (0–900 Hz). The magnetoelastic generator achieves a short-circuit current density of 98 μA cm<sup>−2</sup> at a low internal impedance of 300 Ω, representing a significant improvement in current output that achieves a 100-fold increase compared to existing counterparts for acoustic energy harvesting. With inherent waterproofness and dustproofness, it can function effectively in humid or dusty conditions without extra encapsulation. The acoustic energy harvester demonstrates excellent scalability, making it suitable for diverse applications in sustainable energy systems.","PeriodicalId":388,"journal":{"name":"Matter","volume":"18 1","pages":""},"PeriodicalIF":17.3000,"publicationDate":"2025-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Leveraging giant magnetoelasticity in soft matter for acoustic energy harvesting\",\"authors\":\"Junyi Yin, Shaolei Wang, Jing Xu, Xun Zhao, Guorui Chen, Xiao Xiao, Jun Chen\",\"doi\":\"10.1016/j.matt.2025.102156\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To address the challenge of recycling energy from low-density acoustic waves found in everyday sounds such as speech and music, we developed a soft acoustic energy harvester based on the giant magnetoelastic effect. This harvester efficiently captures energy from various environmental sound sources. It operates by combining the giant magnetoelastic effect with a spray-coating and magnetic pre-orientation process, enabling it to convert multi-directional acoustic waves into electrical energy across a wide frequency range (0–900 Hz). The magnetoelastic generator achieves a short-circuit current density of 98 μA cm<sup>−2</sup> at a low internal impedance of 300 Ω, representing a significant improvement in current output that achieves a 100-fold increase compared to existing counterparts for acoustic energy harvesting. With inherent waterproofness and dustproofness, it can function effectively in humid or dusty conditions without extra encapsulation. The acoustic energy harvester demonstrates excellent scalability, making it suitable for diverse applications in sustainable energy systems.\",\"PeriodicalId\":388,\"journal\":{\"name\":\"Matter\",\"volume\":\"18 1\",\"pages\":\"\"},\"PeriodicalIF\":17.3000,\"publicationDate\":\"2025-05-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Matter\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1016/j.matt.2025.102156\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Matter","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.matt.2025.102156","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

为了解决从日常声音(如语音和音乐)中发现的低密度声波中回收能量的挑战,我们开发了一种基于巨磁弹性效应的软声波能量收集器。这种收割机有效地从各种环境声源中捕获能量。它通过将巨大的磁弹性效应与喷涂涂层和磁性预定向工艺相结合,使其能够将多向声波转换为宽频率范围(0-900 Hz)的电能。该磁弹性发生器在低内部阻抗为300 Ω的情况下实现了98 μA cm−2的短路电流密度,与现有的同类声能量收集相比,显着提高了电流输出,实现了100倍的提高。具有固有的防水和防尘性,它可以在潮湿或多尘的条件下有效地工作,而无需额外的封装。声波能量采集器具有出色的可扩展性,适用于可持续能源系统的各种应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Leveraging giant magnetoelasticity in soft matter for acoustic energy harvesting

Leveraging giant magnetoelasticity in soft matter for acoustic energy harvesting
To address the challenge of recycling energy from low-density acoustic waves found in everyday sounds such as speech and music, we developed a soft acoustic energy harvester based on the giant magnetoelastic effect. This harvester efficiently captures energy from various environmental sound sources. It operates by combining the giant magnetoelastic effect with a spray-coating and magnetic pre-orientation process, enabling it to convert multi-directional acoustic waves into electrical energy across a wide frequency range (0–900 Hz). The magnetoelastic generator achieves a short-circuit current density of 98 μA cm−2 at a low internal impedance of 300 Ω, representing a significant improvement in current output that achieves a 100-fold increase compared to existing counterparts for acoustic energy harvesting. With inherent waterproofness and dustproofness, it can function effectively in humid or dusty conditions without extra encapsulation. The acoustic energy harvester demonstrates excellent scalability, making it suitable for diverse applications in sustainable energy systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Matter
Matter MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
26.30
自引率
2.60%
发文量
367
期刊介绍: Matter, a monthly journal affiliated with Cell, spans the broad field of materials science from nano to macro levels,covering fundamentals to applications. Embracing groundbreaking technologies,it includes full-length research articles,reviews, perspectives,previews, opinions, personnel stories, and general editorial content. Matter aims to be the primary resource for researchers in academia and industry, inspiring the next generation of materials scientists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信