Dick Sang Hoo, Kein Huat Chua, Yun Seng Lim, Boon Han Lim, Mohammad Babrdel Bonab, Li Wang
{"title":"Mitigation of harmonic distortions in third rail electrical systems","authors":"Dick Sang Hoo, Kein Huat Chua, Yun Seng Lim, Boon Han Lim, Mohammad Babrdel Bonab, Li Wang","doi":"10.11591/ijpeds.v14.i1.pp348-357","DOIUrl":"https://doi.org/10.11591/ijpeds.v14.i1.pp348-357","url":null,"abstract":"<span lang=\"EN-US\">The extensive use of power electronic converters in the third rail system increases the harmonic distortions on the rail electrical feeding systems. Electrical machines and transformers could be overheated causing premature failures of the devices. It is therefore important to address the harmonic distortions on the electrical networks during real-time operation, which includes the degraded operation, not just the normal operation. In this paper, the harmonic distortions of a third rail system are investigated using electrical transient and analysis program (ETAP) simulation software. Four operating scenarios, namely the normal operation and three degraded operations, are considered in the studies. The degraded operations occur when one of the bulk supply transformers or 33 kV feeders is out of service. The findings of the studies showed that the 11<sup>th</sup> and 13<sup>th</sup> order harmonics are the dominant harmonic orders due to the use of 12-pulse rectifiers on the third rail system. Single-tuned harmonic filters are designed and placed in the 33 kV feeders to mitigate the individual voltage harmonic distortion (IHD<sub>v</sub>) and the total voltage harmonic distortion (THD<sub>v</sub>) so that it is within the statutory of IEEE 519:2014.</span>","PeriodicalId":38280,"journal":{"name":"International Journal of Power Electronics and Drive Systems","volume":"48 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136171846","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Bao Binh Pho, Nguyen Van Cao, Tran Minh Hoan, P. Vu
{"title":"A new direct current circuit breaker with current regeneration capability","authors":"Bao Binh Pho, Nguyen Van Cao, Tran Minh Hoan, P. Vu","doi":"10.11591/IJPEDS.V12.I4.PP%P","DOIUrl":"https://doi.org/10.11591/IJPEDS.V12.I4.PP%P","url":null,"abstract":"Direct current (DC) power systems are becoming very popular due to better control ability and equipment reliability thanks to the continuous development of power electronics. A DC circuit breaker (DCCB) used for current interruption in a DC network is a major part of the system. It plays the vital role of isolating networks during fault clearing as well as during normal load switching. Breaking the DC current is a major challenge as it does not have any natural zero crossing points like the AC current has. In addition, energy stored in the network inductances during normal operation opposes the instantaneous current breaking. Hence, all the conventional DC circuit breaker topologies use lossy elements to dissipate this stored energy as heat during the current breaking operation. However, it is possible to store this energy and reuse it later by developing an improvised topology. In this paper, the prospects of energy recovery and reuse in DC circuit breakers have been studied, and a new topology with regenerative current breaking capability has been proposed. This new topology can feed the stored energy of the network back into the same network after breaking the current and thus can improve the overall system efficiency.","PeriodicalId":38280,"journal":{"name":"International Journal of Power Electronics and Drive Systems","volume":"12 1","pages":"2326-2339"},"PeriodicalIF":0.0,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44648664","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Modeling and Control of a Hybrid DC/DC/AC Converter to Transfer Power under Different Power Management Strategies","authors":"Amin Alizadeh Asl, Ramin Alizadeh Asl","doi":"10.11591/IJPEDS.V12.I3.PP%P","DOIUrl":"https://doi.org/10.11591/IJPEDS.V12.I3.PP%P","url":null,"abstract":"A hybrid DC/DC/AC converter connected to the grid without a three-phase transformer is controlled. The decentralized control method is applied to the hybrid DC-DC converter such that the maximum power of PV flows to the grid side. This controller must charge and discharge the battery at the proper time. It must also regulate DC-link voltage. An additional advantage of the proposed control is that the three-phase inverter does not need a separate controller such as PWM and SPWM. A simple technique is used for creating the desired phase shift in the three-phase inverter, which makes the active and reactive power of the inverter controllable. A new configuration is also proposed to transmit and manage the generation power of PV. In this scheme, the battery and fuel cell are employed as an auxiliary source to manage the generation power of PV. Finally, a real-time simulation is performed to verify the effectiveness of the proposed controller and system by considering the real characteristics of PV and FC.","PeriodicalId":38280,"journal":{"name":"International Journal of Power Electronics and Drive Systems","volume":"14 1","pages":"1620-1631"},"PeriodicalIF":0.0,"publicationDate":"2021-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"73282334","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ali M. Baniyounes, Y. Ghadi, Maryam Mahmoud Akho Zahia, Eyad Adwan, Kalid Oliemat
{"title":"Energy, economic and environmental analysis of fuzzy logic controllers used in smart buildings","authors":"Ali M. Baniyounes, Y. Ghadi, Maryam Mahmoud Akho Zahia, Eyad Adwan, Kalid Oliemat","doi":"10.11591/IJPEDS.V12.I2.PP1283-1292","DOIUrl":"https://doi.org/10.11591/IJPEDS.V12.I2.PP1283-1292","url":null,"abstract":"This article is divided into three parts: the first presents a simulation study of the effect of occupancy level on energy usage pattern of Engineering building of Applied Science Private university, Amman, Jordan. The simulation was created on simulation mechanism by means of EnergyPlus software and improved by using the building’s data such as building’s as built plan, occupant’s density level based on data about who utilize the building throughout operational hours, energy usage level, Heating Ventilating and air conditioning (HVAC) system, lighting and its control systems and etc. Data regarding occupancy density level estimation is used to provide the proposed controller with random number of users grounded on report were arranged by the university’s facilities operational team. The other division of this paper shows the estimated saved energy by the means of suggested advanced add-on, FUZZY-PID controlling system. The energy savings were divided into summer savings and winter savings. The third division presents economic and environmental analysis of the proposed advanced fuzzy logic controllers of smart buildings in Subtropical Jordan. The economic parameters that were used to evaluate the system economy performance are life-cycle analysis, present worth factor and system payback period. The system economic analysis was done using MATLAB software","PeriodicalId":38280,"journal":{"name":"International Journal of Power Electronics and Drive Systems","volume":"12 1","pages":"1283-1292"},"PeriodicalIF":0.0,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42101593","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Active damping method for voltage source inverter-based distributed generator using multivariable finite-control-set model predictive control","authors":"Jonggrist Jongudomkarn, W. Kampeerawat","doi":"10.11591/IJPEDS.V12.I1.PP334-344","DOIUrl":"https://doi.org/10.11591/IJPEDS.V12.I1.PP334-344","url":null,"abstract":"Despite its advantages, the LCL filter can significantly distort the grid current and constitute a substantially more complex control issue for the grid-connected distributed generators (DGs). This paper presents an active damping approach to deal with the LCL filter's oscillation for the finite-control-set model predictive control (FCS-MPC)-three-phase voltage source inverters (VSIs)-based DG. The new approaches use the multivariable control of the inverter side's filter current and capacitor voltage to suppress the LCL filter resonance. The proposed method has been tested in steady-state and under grid voltage disturbances. The comparative study was also conducted with the existing virtual resistance active damping approaches for an FCS-MPC algorithm. The study validates the developed control schemes' superior performance and shows its ability to eliminate lower-order grid current harmonics and decrease sensitivity to grid voltage distortion.","PeriodicalId":38280,"journal":{"name":"International Journal of Power Electronics and Drive Systems","volume":"12 1","pages":"334-344"},"PeriodicalIF":0.0,"publicationDate":"2021-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44816993","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Proposed synchronization circuits connecting wind driven DFIG to the public grid","authors":"Mohamed H. Agamy, Fahe M. Ellithy, A. Nada","doi":"10.11591/IJPEDS.V12.I1.PP151-159","DOIUrl":"https://doi.org/10.11591/IJPEDS.V12.I1.PP151-159","url":null,"abstract":"This paper presents a tested proposal scheme to connect a DFIG driven by a wind turbine to the public grid. This scheme was implemented to drive an automatic transfer switch (ATS). Control of the phase sequence, phase difference, and the frequency of the injected power are achieved using these proposed control circuits. These circuits are practically implemented and laboratory tested. The system allows monitoring the rated frequency, synchronization, and fundamental magnitude. Simulation software such as Multi Sim and Proteus are used for system validation and compatibility. The implemented circuits are used for re-scaling the grid voltage to the logic level for real time comparison and calculations. In addition to the feature of data monitoring, the system can also log these data for the system debugging purposes. The system can be considered as a real time control where the measurements and the correction are made in few milliseconds (fractions of the fundamental cycle). The lower cost control circuits are implemented using an Arduino kit in addition to a discrete digital component. The simulation and experimental results are in satisfactory agreement showing the most salient features of this system.","PeriodicalId":38280,"journal":{"name":"International Journal of Power Electronics and Drive Systems","volume":"12 1","pages":"151-159"},"PeriodicalIF":0.0,"publicationDate":"2021-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43377238","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Bouhenna Amina, K. Mohammed, Merabet Boulouiha Houari
{"title":"Super-twisting SMC for MPPT and grid-connected WECS based on SCIG","authors":"Bouhenna Amina, K. Mohammed, Merabet Boulouiha Houari","doi":"10.11591/IJPEDS.V12.I1.PP520-531","DOIUrl":"https://doi.org/10.11591/IJPEDS.V12.I1.PP520-531","url":null,"abstract":"This paper proposes a high-order sliding mode control (HO-SMC) with the super-twisting (ST) algorithm for maximum power point tracking (MPPT) and grid-connected wind energy conversion system (WECS), based on squirrel-cage induction generator (SCIG). The main features of this control strategy are attenuation of the chattering phenomenon inherent in first-order sliding mode control and its robustness against external and internal disturbances encountered by the wind power system. The simulation is carried out under SimPowerSystems of MATLAB/Simulink to evaluate the performance and effectiveness of the proposed control compared with conventional and fuzzy logic proportional-integral (PI) controllers for three different scenarios of disturbances, a fluctuating wind speed, a grid voltage drop, and parametric variations.","PeriodicalId":38280,"journal":{"name":"International Journal of Power Electronics and Drive Systems","volume":"12 1","pages":"520-531"},"PeriodicalIF":0.0,"publicationDate":"2021-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49466700","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A robust nonlinear control strategy of a PV System connected to the three-phase grid based on backstepping and PSO technique","authors":"Salma Zouga, M. Benchagra, A. Ailane","doi":"10.11591/IJPEDS.V12.I1.PP612-626","DOIUrl":"https://doi.org/10.11591/IJPEDS.V12.I1.PP612-626","url":null,"abstract":"This article presents a robust non-linear control technique of the three-phase photovoltaic system. The structure chosen for this PV system is that of two power converters and DC voltage intermediate bus. The two power converters are: the DC-DC converter and the three-phase inverter, which requires two main controllers. These controllers have three main objectives. The first objective is to impose the PV voltage generated by the photovoltaic panel, in order to follow a maximum reference voltage provided by the MPPT block. The second one is to maintain the DC link voltage to a constant value, in order to optimize the transfer of energy between the two power converters. The last objective is to inject a three-phase sinusoidal current into the grid, while respecting a unit power factor. With the intention to achieve these three objectives, we designed cascading nonlinear controllers by using the technique of non-linear backstepping control in the synthesis of these two controllers, based on the Lyapunov function, with regard to maximise the PVG output voltage, in order to have a unitary power factor at the grid side. In order to regulate DC-link voltage, we developed an integral proportional controller (PI) with parameters that are optimized by the Particle Swarm Optimization (PSO) method. The robustness of the controller designed approach is tested by a simulation in MATLAB/Simulink software, that improves the performances of each controller whatever conditions of climate.","PeriodicalId":38280,"journal":{"name":"International Journal of Power Electronics and Drive Systems","volume":"12 1","pages":"612-626"},"PeriodicalIF":0.0,"publicationDate":"2021-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42731860","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Investigation of reliability assessement in power electronics circuits using machine learning","authors":"Soumya Rani Mestha, Pinto Pius A.J","doi":"10.11591/IJPEDS.V12.I1.PP558-566","DOIUrl":"https://doi.org/10.11591/IJPEDS.V12.I1.PP558-566","url":null,"abstract":"Recent advances in power electronics (PE) and machine learning (ML) have prompted the technologists to adapt these new technologies to improve the reliability of PE systems. During the process, a lot of investigations on the performance and reliability of PE systems is carried out. The intention of this paper is to present a comprehensive study of advances in the field of reliability of PE systems using machine learning. Recent publications in this regard are analysed and findings are tabulated. In addition to this, literatures published in the prediction of remaining useful life (RUL) of power electronic components is discussed with emphasis on its limitations.","PeriodicalId":38280,"journal":{"name":"International Journal of Power Electronics and Drive Systems","volume":"12 1","pages":"558-566"},"PeriodicalIF":0.0,"publicationDate":"2021-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46856908","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Btissam Majout, Douae Abrahmi, Y. Ihedrane, Chakib El Bakkali, K. Mohammed, B. Bossoufi
{"title":"Improvement of sliding mode power control applied to wind system based on doubly-fed induction generator","authors":"Btissam Majout, Douae Abrahmi, Y. Ihedrane, Chakib El Bakkali, K. Mohammed, B. Bossoufi","doi":"10.11591/IJPEDS.V12.I1.PP441-452","DOIUrl":"https://doi.org/10.11591/IJPEDS.V12.I1.PP441-452","url":null,"abstract":"In this work, we are interested in improving the performance of a doubly-fed induction generator (DFIG)-based wind system, by applying a sliding mode control strategy. The objective is the regulation of the active and reactive power, also the voltage and the frequency of the signal injected into the distribution network. The model proposed for the control is based on the sliding mode technique with performance estimators. The proposed model was validated by a simulation on MATLAB/Simulink.","PeriodicalId":38280,"journal":{"name":"International Journal of Power Electronics and Drive Systems","volume":"12 1","pages":"441-452"},"PeriodicalIF":0.0,"publicationDate":"2021-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44356588","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}