{"title":"Proposed synchronization circuits connecting wind driven DFIG to the public grid","authors":"Mohamed H. Agamy, Fahe M. Ellithy, A. Nada","doi":"10.11591/IJPEDS.V12.I1.PP151-159","DOIUrl":null,"url":null,"abstract":"This paper presents a tested proposal scheme to connect a DFIG driven by a wind turbine to the public grid. This scheme was implemented to drive an automatic transfer switch (ATS). Control of the phase sequence, phase difference, and the frequency of the injected power are achieved using these proposed control circuits. These circuits are practically implemented and laboratory tested. The system allows monitoring the rated frequency, synchronization, and fundamental magnitude. Simulation software such as Multi Sim and Proteus are used for system validation and compatibility. The implemented circuits are used for re-scaling the grid voltage to the logic level for real time comparison and calculations. In addition to the feature of data monitoring, the system can also log these data for the system debugging purposes. The system can be considered as a real time control where the measurements and the correction are made in few milliseconds (fractions of the fundamental cycle). The lower cost control circuits are implemented using an Arduino kit in addition to a discrete digital component. The simulation and experimental results are in satisfactory agreement showing the most salient features of this system.","PeriodicalId":38280,"journal":{"name":"International Journal of Power Electronics and Drive Systems","volume":"12 1","pages":"151-159"},"PeriodicalIF":0.0000,"publicationDate":"2021-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Power Electronics and Drive Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11591/IJPEDS.V12.I1.PP151-159","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Energy","Score":null,"Total":0}
引用次数: 2
Abstract
This paper presents a tested proposal scheme to connect a DFIG driven by a wind turbine to the public grid. This scheme was implemented to drive an automatic transfer switch (ATS). Control of the phase sequence, phase difference, and the frequency of the injected power are achieved using these proposed control circuits. These circuits are practically implemented and laboratory tested. The system allows monitoring the rated frequency, synchronization, and fundamental magnitude. Simulation software such as Multi Sim and Proteus are used for system validation and compatibility. The implemented circuits are used for re-scaling the grid voltage to the logic level for real time comparison and calculations. In addition to the feature of data monitoring, the system can also log these data for the system debugging purposes. The system can be considered as a real time control where the measurements and the correction are made in few milliseconds (fractions of the fundamental cycle). The lower cost control circuits are implemented using an Arduino kit in addition to a discrete digital component. The simulation and experimental results are in satisfactory agreement showing the most salient features of this system.
期刊介绍:
International Journal of Power Electronics and Drive Systems (IJPEDS) is the official publication of the Institute of Advanced Engineering and Science (IAES). The journal is open to submission from scholars and experts in the wide areas of power electronics and electrical drive systems from the global world. The scope of the journal includes all issues in the field of Power Electronics and drive systems. Included are techniques for advanced power semiconductor devices, control in power electronics, low and high power converters (inverters, converters, controlled and uncontrolled rectifiers), Control algorithms and techniques applied to power electronics, electromagnetic and thermal performance of electronic power converters and inverters, power quality and utility applications, renewable energy, electric machines, modelling, simulation, analysis, design and implementations of the application of power circuit components (power semiconductors, inductors, high frequency transformers, capacitors), EMI/EMC considerations, power devices and components, sensors, integration and packaging, applications in motor drives, wind energy systems, solar, battery chargers, UPS and hybrid systems and other applications.