Bouhenna Amina, K. Mohammed, Merabet Boulouiha Houari
{"title":"用于MPPT和基于SCIG的并网WECS的超扭曲SMC","authors":"Bouhenna Amina, K. Mohammed, Merabet Boulouiha Houari","doi":"10.11591/IJPEDS.V12.I1.PP520-531","DOIUrl":null,"url":null,"abstract":"This paper proposes a high-order sliding mode control (HO-SMC) with the super-twisting (ST) algorithm for maximum power point tracking (MPPT) and grid-connected wind energy conversion system (WECS), based on squirrel-cage induction generator (SCIG). The main features of this control strategy are attenuation of the chattering phenomenon inherent in first-order sliding mode control and its robustness against external and internal disturbances encountered by the wind power system. The simulation is carried out under SimPowerSystems of MATLAB/Simulink to evaluate the performance and effectiveness of the proposed control compared with conventional and fuzzy logic proportional-integral (PI) controllers for three different scenarios of disturbances, a fluctuating wind speed, a grid voltage drop, and parametric variations.","PeriodicalId":38280,"journal":{"name":"International Journal of Power Electronics and Drive Systems","volume":"12 1","pages":"520-531"},"PeriodicalIF":0.0000,"publicationDate":"2021-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Super-twisting SMC for MPPT and grid-connected WECS based on SCIG\",\"authors\":\"Bouhenna Amina, K. Mohammed, Merabet Boulouiha Houari\",\"doi\":\"10.11591/IJPEDS.V12.I1.PP520-531\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a high-order sliding mode control (HO-SMC) with the super-twisting (ST) algorithm for maximum power point tracking (MPPT) and grid-connected wind energy conversion system (WECS), based on squirrel-cage induction generator (SCIG). The main features of this control strategy are attenuation of the chattering phenomenon inherent in first-order sliding mode control and its robustness against external and internal disturbances encountered by the wind power system. The simulation is carried out under SimPowerSystems of MATLAB/Simulink to evaluate the performance and effectiveness of the proposed control compared with conventional and fuzzy logic proportional-integral (PI) controllers for three different scenarios of disturbances, a fluctuating wind speed, a grid voltage drop, and parametric variations.\",\"PeriodicalId\":38280,\"journal\":{\"name\":\"International Journal of Power Electronics and Drive Systems\",\"volume\":\"12 1\",\"pages\":\"520-531\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Power Electronics and Drive Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.11591/IJPEDS.V12.I1.PP520-531\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Energy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Power Electronics and Drive Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11591/IJPEDS.V12.I1.PP520-531","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Energy","Score":null,"Total":0}
Super-twisting SMC for MPPT and grid-connected WECS based on SCIG
This paper proposes a high-order sliding mode control (HO-SMC) with the super-twisting (ST) algorithm for maximum power point tracking (MPPT) and grid-connected wind energy conversion system (WECS), based on squirrel-cage induction generator (SCIG). The main features of this control strategy are attenuation of the chattering phenomenon inherent in first-order sliding mode control and its robustness against external and internal disturbances encountered by the wind power system. The simulation is carried out under SimPowerSystems of MATLAB/Simulink to evaluate the performance and effectiveness of the proposed control compared with conventional and fuzzy logic proportional-integral (PI) controllers for three different scenarios of disturbances, a fluctuating wind speed, a grid voltage drop, and parametric variations.
期刊介绍:
International Journal of Power Electronics and Drive Systems (IJPEDS) is the official publication of the Institute of Advanced Engineering and Science (IAES). The journal is open to submission from scholars and experts in the wide areas of power electronics and electrical drive systems from the global world. The scope of the journal includes all issues in the field of Power Electronics and drive systems. Included are techniques for advanced power semiconductor devices, control in power electronics, low and high power converters (inverters, converters, controlled and uncontrolled rectifiers), Control algorithms and techniques applied to power electronics, electromagnetic and thermal performance of electronic power converters and inverters, power quality and utility applications, renewable energy, electric machines, modelling, simulation, analysis, design and implementations of the application of power circuit components (power semiconductors, inductors, high frequency transformers, capacitors), EMI/EMC considerations, power devices and components, sensors, integration and packaging, applications in motor drives, wind energy systems, solar, battery chargers, UPS and hybrid systems and other applications.