W. T. Chew, W. Yong, J. S. Ong, J. Leong, T. Sutikno
{"title":"Dynamic simulation of three-phase nine-level multilevel inverter with switching angles optimized using nature-inspired algorithm","authors":"W. T. Chew, W. Yong, J. S. Ong, J. Leong, T. Sutikno","doi":"10.11591/IJPEDS.V12.I1.PP325-333","DOIUrl":"https://doi.org/10.11591/IJPEDS.V12.I1.PP325-333","url":null,"abstract":"This paper recommends the use of grasshopper optimization algorithm (GOA), a nature-inspired optimization algorithm, for optimizing switching-angle applied to cascaded H-bridge multilevel inverter (CHBMLI). Switching angles are selected based on the minimum value of the objective function formulated using the concept of selective harmonic minimization pulse width modulation (SHMPWM) technique. MATLAB/Simulink-PSIM dynamic co-simulation conducted on a 3-phase 9-level CHBMLI shows that the CHBMLI controlled using GOA derived switching-angle is able to respond to varying modulation index demand and synthesize an AC staircase output voltage waveform with the desired fundamental harmonic and minimized selected low-order harmonics. Compared to Newton Raphson (NR) technique, GOA is able to find optimum switching-angle solutions over a wider modulation index range. Compared to Genetic Algorithm (GA), GOA is able to find global minima with higher probability. The simulation results validate the performance of GOA for switching-angle calculation based on the concept of SHMPWM.","PeriodicalId":38280,"journal":{"name":"International Journal of Power Electronics and Drive Systems","volume":"12 1","pages":"325-333"},"PeriodicalIF":0.0,"publicationDate":"2021-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44613324","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Soft start-up strategy of pulse-density-modulated series-resonant converter for induction heating application","authors":"P. Herasymenko, V. Pavlovskyi","doi":"10.11591/IJPEDS.V12.I1.PP258-272","DOIUrl":"https://doi.org/10.11591/IJPEDS.V12.I1.PP258-272","url":null,"abstract":"This paper presents a soft start-up strategy of pulse-density-modulated series-resonant converter for induction heating application. The pulse-density modulation (PDM) technique is widely used in converters based on voltage-source series-resonant inverters (SRIs) to control the output current or power. However, during a start-up process, PDM has some disadvantages both in inrush current limiting and providing a zero-voltage switching operation of SRI transistors. In the paper, different PDM techniques are considered and basic moments of PDM using within the start-up process are analyzed. A new soft start-up strategy of PDM converter for induction heating application is proposed. The main features of the proposed strategy include an interleaved or a stepped PDM control, an initial combination of PDM at the beginning of the start-up process, and an operating algorithm during the start-up process. The proposed strategy was verified by a 2.5 kW experimental setup of the pulse-density-modulated interleaved converter with an operating frequency from 50 kHz up to 100 kHz. Experimental results confirm the effectiveness of the proposed start-up strategy and show that the maximum current amplitude within start-up processes exceeds the maximum steady-state current amplitude by no more than 30%.","PeriodicalId":38280,"journal":{"name":"International Journal of Power Electronics and Drive Systems","volume":"12 1","pages":"258-272"},"PeriodicalIF":0.0,"publicationDate":"2021-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45980819","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A dual-switch cubic SEPIC converter with extra high voltage gain","authors":"C. R. F. Mbobda, A. Dikandé","doi":"10.11591/IJPEDS.V12.I1.PP199-211","DOIUrl":"https://doi.org/10.11591/IJPEDS.V12.I1.PP199-211","url":null,"abstract":"To provide a high votage conversion ratio, conventional non-isolated DC-DC boost topologies, which have reduced voltage boost capability, have to operate with extremely high duty cycle ratio, higher than 0.9. This paper proposes a DC-DC converter which is mainly based on the narrow range of duty cycle ratio to achieve extra high voltage conversion gain at relatively reduced voltage stress on semiconductors. In addition, it does include any magnetic coupling structure. The structure of the proposed converter combines the new hybrid SEPIC converter and voltage multiplier cells. From the steady-state analysis, this converter has wide conversion ratio and cubic dependence with respect to the duty ratio and then, can increase the output voltage several times more than the conventional and quadratic converters at the same duty cycle ratio. However, the proposed dual-switch cubic SEPIC converter must withstand higher voltage stress on output switches. To overcome this drawback, an extension of the proposed converter is also introduced and discussed. The superiority of the proposed converter is mainly based on its cubic dependence on the duty cycle ratio that allows it to achieve extra high voltage gain at reduced voltage stress on semiconductors. Simulation results are shown and they corroborate the feasibility, practicality and validity of the concepts of the proposed converter.","PeriodicalId":38280,"journal":{"name":"International Journal of Power Electronics and Drive Systems","volume":"45 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"64368366","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"State feedback control of advanced static var compensator using a five-level NPC inverter topology","authors":"Mansour Benyamina, A. Tahri, A. Boukortt","doi":"10.11591/IJPEDS.V12.I1.PP345-355","DOIUrl":"https://doi.org/10.11591/IJPEDS.V12.I1.PP345-355","url":null,"abstract":"This paper deals with the modeling and control of an advanced static var compensator (ASVC) using a five-level neutral point-clamped (NPC) voltage source inverter (VSI). The nonlinear state space model of the five-level ASVC is obtained from the d-q axis frame. The effectiveness of this compensator highly depends on the choice of the control strategy. The proposed state feedback control (SFC) technique is applied to adjust the ASVC Var flow with the AC transmission network and achieve DC voltage capacitor balance. The dynamic performance of the ASVC based SFC controller is evaluated under several operating conditions. The simulation results demonstrate that the proposed SFC control strategy is highly robust compared to the conventional Proportional-Integral (PI) control.","PeriodicalId":38280,"journal":{"name":"International Journal of Power Electronics and Drive Systems","volume":"432 1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"64368534","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ibtissem Barkat, A. Benretem, F. Massouh, Issam Meghlaoui, A. Chebel
{"title":"Modeling and simulation of forces applied to the horizontal axis wind turbine rotors by the vortex method coupled with the method of the blade element","authors":"Ibtissem Barkat, A. Benretem, F. Massouh, Issam Meghlaoui, A. Chebel","doi":"10.11591/IJPEDS.V12.I1.PP413-420","DOIUrl":"https://doi.org/10.11591/IJPEDS.V12.I1.PP413-420","url":null,"abstract":"This article aims to study the forces applied to the rotors of horizontal axis wind turbines. The aerodynamics of a turbine are controlled by the flow around the rotor, or estimate of air charges on the rotor blades under various operating conditions and their relation to the structural dynamics of the rotor are critical for design. One of the major challenges in wind turbine aerodynamics is to predict the forces on the blade as various methods, including blade element moment theory (BEM), the approach that is naturally adapted to the simulation of the aerodynamics of wind turbines and the dynamic and models (CFD) that describes with fidelity the flow around the rotor. In our article we proposed a modeling method and a simulation of the forces applied to the horizontal axis wind rotors turbines using the application of the blade elements method to model the rotor and the vortex method of free wake modeling in order to develop a rotor model, which can be used to study wind farms. This model is intended to speed up the calculation, guaranteeing a good representation of the aerodynamic loads exerted by the wind.","PeriodicalId":38280,"journal":{"name":"International Journal of Power Electronics and Drive Systems","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"64368948","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The cascade methods of doubly-fed induction machine for generator system","authors":"Diep-Dung Nguyen, Ngoc-Hoan Than, Duc-Tuan Hoang","doi":"10.11591/IJPEDS.V12.I1.PP112-120","DOIUrl":"https://doi.org/10.11591/IJPEDS.V12.I1.PP112-120","url":null,"abstract":"This paper presents two solutions to cascade the doubly-fed induction machines in the power generator systems. The first solution is a traditional one with the power control circuit located on the stator-side. The second solution is a new one with the power control circuit located on the rotor-side. After analysis and evaluation, it is shown that the solution with the power control circuit located on the rotor side has advantages over the solution with the power control circuit located on the stator-side. Therefore, the authors chose the solution which is a power control circuit located on the rotor side to study, analyze in-depth and run the simulation. The results show that the proposed solution has a very good quality, the output voltage of the generator always follows the grid-voltage even when changing the gird-voltage or changing the speed of the generator.","PeriodicalId":38280,"journal":{"name":"International Journal of Power Electronics and Drive Systems","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"64368361","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Impact of the hybrid reactive power compensator on the power grid used a fuzzy PI regulator","authors":"A. Rahmouni","doi":"10.11591/IJPEDS.V12.I1.PP170-182","DOIUrl":"https://doi.org/10.11591/IJPEDS.V12.I1.PP170-182","url":null,"abstract":"The work presented in this article is a contribution to the problem of controlling reactive powers and voltages in an electrical network. Among these control tools, the static reactive power compensator (SVC) was chosen because of its simplicity of control. SVC is one of the Alternative Flexible Current Transmission Systems (FACTS) devices which help to solve the problems encountered in the operation of electrical networks, either on the distribution side or on the transport side. To increase its compensation efficiency in the face of harmonic currents which cause voltage distortion, we have introduced a three-phase harmonic filter. This new hybrid SVC is used to control the reactive power, the voltage and in addition to reduce the voltage distortion and the correction of the power factor in the electrical energy transport network. In order to improve its efficiency, two voltage regulation systems have been chosen in the control system for this compensator, the fuzzy PI regulator and the PIP regulator.","PeriodicalId":38280,"journal":{"name":"International Journal of Power Electronics and Drive Systems","volume":"12 1","pages":"170-182"},"PeriodicalIF":0.0,"publicationDate":"2021-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45827845","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
E. Radwan, M. Nour, Ali M. Baniyounes, Khalid S. Al Olimat, E. Awada
{"title":"Direct control of active and reactive power for a grid-connected single-phase photovoltaic inverter","authors":"E. Radwan, M. Nour, Ali M. Baniyounes, Khalid S. Al Olimat, E. Awada","doi":"10.11591/IJPEDS.V12.I1.PP139-150","DOIUrl":"https://doi.org/10.11591/IJPEDS.V12.I1.PP139-150","url":null,"abstract":"This paper presents a single-phase grid-connected photovoltaic system with direct control of active and reactive power through a power management system of a Photovoltaic inverter. The proposed control algorithm is designed to allow maximum utilization of the inverter’s available KVA capacity while maintaining grid power factor and current total harmonic distortion (THD) requirements within the grid standards. To reduce the complexity and improve the efficiency of the system, two independent PI controllers are implemented to control single-phase unipolar PWM voltage source inverter. One controller is used to control the power angle, and hence the active power flow, while the other controller is used to control the reactive power, and consequently the power factor by adjusting the voltage modulation index of the inverter. The proposed system is modelled and simulated using MATLAB/Simulink. The PV inverter has been examined while being simultaneously connected to grid and local load. Results obtained showed the ability of the PV inverter to manage the active and reactive power flow at, and below rated levels of solar irradiances; resulting in an increased inverter utilization factor, and enhanced power quality. The proposed system, was capable of operating at power factors in the range of 0.9 lead or lag for reactive power compensation purposes and delivered its power at a wide range of solar irradiance variations.","PeriodicalId":38280,"journal":{"name":"International Journal of Power Electronics and Drive Systems","volume":"12 1","pages":"139-150"},"PeriodicalIF":0.0,"publicationDate":"2021-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47195242","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Houaria Abdelli, A. Mezouar, M. Bendjebbar, Kh. Belgacem
{"title":"Synthesis of SMC algorithms applied to wind generator","authors":"Houaria Abdelli, A. Mezouar, M. Bendjebbar, Kh. Belgacem","doi":"10.11591/IJPEDS.V12.I1.PP404-412","DOIUrl":"https://doi.org/10.11591/IJPEDS.V12.I1.PP404-412","url":null,"abstract":"The use of the classical (SMC) applied to control of stator’s powers of DFIG, gives the problem of chattering, therefore to avoid this phenomenon a robust algorithm (STSMC) is applied. This paper presents a comparison of conventional SMC with the proposed strategy of STSMC algorithm. The results are obtained using MATLAB and demonstrate stability and robustness of this algorithm.","PeriodicalId":38280,"journal":{"name":"International Journal of Power Electronics and Drive Systems","volume":"12 1","pages":"404-412"},"PeriodicalIF":0.0,"publicationDate":"2021-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48239297","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A. Ragab, M. Marei, M. Mokhtar, Ahmed Abdel-Sattar
{"title":"Design and performance evaluation of a PV interface system based on inductive power transfer","authors":"A. Ragab, M. Marei, M. Mokhtar, Ahmed Abdel-Sattar","doi":"10.11591/IJPEDS.V12.I1.PP364-373","DOIUrl":"https://doi.org/10.11591/IJPEDS.V12.I1.PP364-373","url":null,"abstract":"This paper presents a photovoltaic (PV) based battery charger utilizing a wireless power transfer (WPT) interface system. The double-sided inductor-capacitor-capacitor (LCC) compensation network is utilized for the inductive power transfer (IPT) system. Because of nonlinear characteristics of the PV, the maximum power point tracking (MPPT) is achieved by controlling the phase displacement angle or the pulse width of the quasi-square pulse inverter connected to the transmitting coil of the IPT system. As a result, the power transferred to the secondary-side, which is connected to a battery bank, is regulated. The IPT-based PV interface system is designed to achieve zero voltage switching (ZVS) in the primary side at rated conditions to minimize the switching loss. Extensive simulation studies are carried out using EMTDC/PSCAD software to investigate the dynamic performance of the proposed IPT-based PV interface system.","PeriodicalId":38280,"journal":{"name":"International Journal of Power Electronics and Drive Systems","volume":"10 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"64368550","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}