基于感应功率传输的光伏接口系统设计与性能评价

Q2 Energy
A. Ragab, M. Marei, M. Mokhtar, Ahmed Abdel-Sattar
{"title":"基于感应功率传输的光伏接口系统设计与性能评价","authors":"A. Ragab, M. Marei, M. Mokhtar, Ahmed Abdel-Sattar","doi":"10.11591/IJPEDS.V12.I1.PP364-373","DOIUrl":null,"url":null,"abstract":"This paper presents a photovoltaic (PV) based battery charger utilizing a wireless power transfer (WPT) interface system. The double-sided inductor-capacitor-capacitor (LCC) compensation network is utilized for the inductive power transfer (IPT) system. Because of nonlinear characteristics of the PV, the maximum power point tracking (MPPT) is achieved by controlling the phase displacement angle or the pulse width of the quasi-square pulse inverter connected to the transmitting coil of the IPT system. As a result, the power transferred to the secondary-side, which is connected to a battery bank, is regulated. The IPT-based PV interface system is designed to achieve zero voltage switching (ZVS) in the primary side at rated conditions to minimize the switching loss. Extensive simulation studies are carried out using EMTDC/PSCAD software to investigate the dynamic performance of the proposed IPT-based PV interface system.","PeriodicalId":38280,"journal":{"name":"International Journal of Power Electronics and Drive Systems","volume":"10 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Design and performance evaluation of a PV interface system based on inductive power transfer\",\"authors\":\"A. Ragab, M. Marei, M. Mokhtar, Ahmed Abdel-Sattar\",\"doi\":\"10.11591/IJPEDS.V12.I1.PP364-373\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a photovoltaic (PV) based battery charger utilizing a wireless power transfer (WPT) interface system. The double-sided inductor-capacitor-capacitor (LCC) compensation network is utilized for the inductive power transfer (IPT) system. Because of nonlinear characteristics of the PV, the maximum power point tracking (MPPT) is achieved by controlling the phase displacement angle or the pulse width of the quasi-square pulse inverter connected to the transmitting coil of the IPT system. As a result, the power transferred to the secondary-side, which is connected to a battery bank, is regulated. The IPT-based PV interface system is designed to achieve zero voltage switching (ZVS) in the primary side at rated conditions to minimize the switching loss. Extensive simulation studies are carried out using EMTDC/PSCAD software to investigate the dynamic performance of the proposed IPT-based PV interface system.\",\"PeriodicalId\":38280,\"journal\":{\"name\":\"International Journal of Power Electronics and Drive Systems\",\"volume\":\"10 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Power Electronics and Drive Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.11591/IJPEDS.V12.I1.PP364-373\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Energy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Power Electronics and Drive Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11591/IJPEDS.V12.I1.PP364-373","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Energy","Score":null,"Total":0}
引用次数: 2

摘要

本文介绍了一种基于光伏(PV)的电池充电器,该充电器采用无线传输(WPT)接口系统。将电感-电容-电容(LCC)补偿网络应用于感应功率传输(IPT)系统。由于光伏的非线性特性,通过控制与IPT系统发射线圈相连的准平方脉冲逆变器的相位角或脉宽来实现最大功率点跟踪(MPPT)。因此,传输到与电池组相连的二次侧的电力受到调节。基于ipt的PV接口系统旨在在额定条件下实现一次侧零电压开关(ZVS),以最小化开关损耗。利用EMTDC/PSCAD软件进行了广泛的仿真研究,以研究所提出的基于ipt的PV接口系统的动态性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Design and performance evaluation of a PV interface system based on inductive power transfer
This paper presents a photovoltaic (PV) based battery charger utilizing a wireless power transfer (WPT) interface system. The double-sided inductor-capacitor-capacitor (LCC) compensation network is utilized for the inductive power transfer (IPT) system. Because of nonlinear characteristics of the PV, the maximum power point tracking (MPPT) is achieved by controlling the phase displacement angle or the pulse width of the quasi-square pulse inverter connected to the transmitting coil of the IPT system. As a result, the power transferred to the secondary-side, which is connected to a battery bank, is regulated. The IPT-based PV interface system is designed to achieve zero voltage switching (ZVS) in the primary side at rated conditions to minimize the switching loss. Extensive simulation studies are carried out using EMTDC/PSCAD software to investigate the dynamic performance of the proposed IPT-based PV interface system.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Power Electronics and Drive Systems
International Journal of Power Electronics and Drive Systems Energy-Energy Engineering and Power Technology
CiteScore
3.50
自引率
0.00%
发文量
0
期刊介绍: International Journal of Power Electronics and Drive Systems (IJPEDS) is the official publication of the Institute of Advanced Engineering and Science (IAES). The journal is open to submission from scholars and experts in the wide areas of power electronics and electrical drive systems from the global world. The scope of the journal includes all issues in the field of Power Electronics and drive systems. Included are techniques for advanced power semiconductor devices, control in power electronics, low and high power converters (inverters, converters, controlled and uncontrolled rectifiers), Control algorithms and techniques applied to power electronics, electromagnetic and thermal performance of electronic power converters and inverters, power quality and utility applications, renewable energy, electric machines, modelling, simulation, analysis, design and implementations of the application of power circuit components (power semiconductors, inductors, high frequency transformers, capacitors), EMI/EMC considerations, power devices and components, sensors, integration and packaging, applications in motor drives, wind energy systems, solar, battery chargers, UPS and hybrid systems and other applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信