{"title":"A dual-switch cubic SEPIC converter with extra high voltage gain","authors":"C. R. F. Mbobda, A. Dikandé","doi":"10.11591/IJPEDS.V12.I1.PP199-211","DOIUrl":null,"url":null,"abstract":"To provide a high votage conversion ratio, conventional non-isolated DC-DC boost topologies, which have reduced voltage boost capability, have to operate with extremely high duty cycle ratio, higher than 0.9. This paper proposes a DC-DC converter which is mainly based on the narrow range of duty cycle ratio to achieve extra high voltage conversion gain at relatively reduced voltage stress on semiconductors. In addition, it does include any magnetic coupling structure. The structure of the proposed converter combines the new hybrid SEPIC converter and voltage multiplier cells. From the steady-state analysis, this converter has wide conversion ratio and cubic dependence with respect to the duty ratio and then, can increase the output voltage several times more than the conventional and quadratic converters at the same duty cycle ratio. However, the proposed dual-switch cubic SEPIC converter must withstand higher voltage stress on output switches. To overcome this drawback, an extension of the proposed converter is also introduced and discussed. The superiority of the proposed converter is mainly based on its cubic dependence on the duty cycle ratio that allows it to achieve extra high voltage gain at reduced voltage stress on semiconductors. Simulation results are shown and they corroborate the feasibility, practicality and validity of the concepts of the proposed converter.","PeriodicalId":38280,"journal":{"name":"International Journal of Power Electronics and Drive Systems","volume":"45 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Power Electronics and Drive Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11591/IJPEDS.V12.I1.PP199-211","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Energy","Score":null,"Total":0}
引用次数: 2
Abstract
To provide a high votage conversion ratio, conventional non-isolated DC-DC boost topologies, which have reduced voltage boost capability, have to operate with extremely high duty cycle ratio, higher than 0.9. This paper proposes a DC-DC converter which is mainly based on the narrow range of duty cycle ratio to achieve extra high voltage conversion gain at relatively reduced voltage stress on semiconductors. In addition, it does include any magnetic coupling structure. The structure of the proposed converter combines the new hybrid SEPIC converter and voltage multiplier cells. From the steady-state analysis, this converter has wide conversion ratio and cubic dependence with respect to the duty ratio and then, can increase the output voltage several times more than the conventional and quadratic converters at the same duty cycle ratio. However, the proposed dual-switch cubic SEPIC converter must withstand higher voltage stress on output switches. To overcome this drawback, an extension of the proposed converter is also introduced and discussed. The superiority of the proposed converter is mainly based on its cubic dependence on the duty cycle ratio that allows it to achieve extra high voltage gain at reduced voltage stress on semiconductors. Simulation results are shown and they corroborate the feasibility, practicality and validity of the concepts of the proposed converter.
期刊介绍:
International Journal of Power Electronics and Drive Systems (IJPEDS) is the official publication of the Institute of Advanced Engineering and Science (IAES). The journal is open to submission from scholars and experts in the wide areas of power electronics and electrical drive systems from the global world. The scope of the journal includes all issues in the field of Power Electronics and drive systems. Included are techniques for advanced power semiconductor devices, control in power electronics, low and high power converters (inverters, converters, controlled and uncontrolled rectifiers), Control algorithms and techniques applied to power electronics, electromagnetic and thermal performance of electronic power converters and inverters, power quality and utility applications, renewable energy, electric machines, modelling, simulation, analysis, design and implementations of the application of power circuit components (power semiconductors, inductors, high frequency transformers, capacitors), EMI/EMC considerations, power devices and components, sensors, integration and packaging, applications in motor drives, wind energy systems, solar, battery chargers, UPS and hybrid systems and other applications.