A new direct current circuit breaker with current regeneration capability

Q2 Energy
Bao Binh Pho, Nguyen Van Cao, Tran Minh Hoan, P. Vu
{"title":"A new direct current circuit breaker with current regeneration capability","authors":"Bao Binh Pho, Nguyen Van Cao, Tran Minh Hoan, P. Vu","doi":"10.11591/IJPEDS.V12.I4.PP%P","DOIUrl":null,"url":null,"abstract":"Direct current (DC) power systems are becoming very popular due to better control ability and equipment reliability thanks to the continuous development of power electronics. A DC circuit breaker (DCCB) used for current interruption in a DC network is a major part of the system. It plays the vital role of isolating networks during fault clearing as well as during normal load switching. Breaking the DC current is a major challenge as it does not have any natural zero crossing points like the AC current has. In addition, energy stored in the network inductances during normal operation opposes the instantaneous current breaking. Hence, all the conventional DC circuit breaker topologies use lossy elements to dissipate this stored energy as heat during the current breaking operation. However, it is possible to store this energy and reuse it later by developing an improvised topology. In this paper, the prospects of energy recovery and reuse in DC circuit breakers have been studied, and a new topology with regenerative current breaking capability has been proposed. This new topology can feed the stored energy of the network back into the same network after breaking the current and thus can improve the overall system efficiency.","PeriodicalId":38280,"journal":{"name":"International Journal of Power Electronics and Drive Systems","volume":"12 1","pages":"2326-2339"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Power Electronics and Drive Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11591/IJPEDS.V12.I4.PP%P","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Energy","Score":null,"Total":0}
引用次数: 12

Abstract

Direct current (DC) power systems are becoming very popular due to better control ability and equipment reliability thanks to the continuous development of power electronics. A DC circuit breaker (DCCB) used for current interruption in a DC network is a major part of the system. It plays the vital role of isolating networks during fault clearing as well as during normal load switching. Breaking the DC current is a major challenge as it does not have any natural zero crossing points like the AC current has. In addition, energy stored in the network inductances during normal operation opposes the instantaneous current breaking. Hence, all the conventional DC circuit breaker topologies use lossy elements to dissipate this stored energy as heat during the current breaking operation. However, it is possible to store this energy and reuse it later by developing an improvised topology. In this paper, the prospects of energy recovery and reuse in DC circuit breakers have been studied, and a new topology with regenerative current breaking capability has been proposed. This new topology can feed the stored energy of the network back into the same network after breaking the current and thus can improve the overall system efficiency.
一种具有电流再生能力的新型直流断路器
由于电力电子技术的不断发展,直流电力系统具有更好的控制能力和设备可靠性,因此越来越受到人们的欢迎。直流断路器(DC circuit breaker, DCCB)是直流网络中用于断流的重要组成部分。它在故障清除和正常负载切换过程中起到隔离网络的重要作用。打破直流电流是一个主要的挑战,因为它不像交流电流有任何自然的零交叉点。此外,正常工作时存储在网络电感中的能量与瞬时断电流相反。因此,所有传统的直流断路器拓扑结构都使用损耗元件在电流断开操作期间将存储的能量作为热量消散。然而,可以通过开发临时拓扑来存储这种能量并在以后重用它。本文对直流断路器能量回收和再利用的前景进行了研究,提出了一种具有再生分断能力的新型拓扑结构。这种新的拓扑结构可以在断开电流后将网络中存储的能量馈送回同一网络,从而提高整个系统的效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Power Electronics and Drive Systems
International Journal of Power Electronics and Drive Systems Energy-Energy Engineering and Power Technology
CiteScore
3.50
自引率
0.00%
发文量
0
期刊介绍: International Journal of Power Electronics and Drive Systems (IJPEDS) is the official publication of the Institute of Advanced Engineering and Science (IAES). The journal is open to submission from scholars and experts in the wide areas of power electronics and electrical drive systems from the global world. The scope of the journal includes all issues in the field of Power Electronics and drive systems. Included are techniques for advanced power semiconductor devices, control in power electronics, low and high power converters (inverters, converters, controlled and uncontrolled rectifiers), Control algorithms and techniques applied to power electronics, electromagnetic and thermal performance of electronic power converters and inverters, power quality and utility applications, renewable energy, electric machines, modelling, simulation, analysis, design and implementations of the application of power circuit components (power semiconductors, inductors, high frequency transformers, capacitors), EMI/EMC considerations, power devices and components, sensors, integration and packaging, applications in motor drives, wind energy systems, solar, battery chargers, UPS and hybrid systems and other applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信