Journal of the Taiwan Institute of Chemical Engineers最新文献

筛选
英文 中文
Improved diffusion mapping combined with procrustes analysis for capturing local-global data structures in industrial process monitoring 改进的扩散映射与普氏分析相结合,用于捕捉工业过程监控中的局部-全局数据结构
IF 5.5 3区 工程技术
Journal of the Taiwan Institute of Chemical Engineers Pub Date : 2024-08-31 DOI: 10.1016/j.jtice.2024.105747
Lingling Tong, Zhimin Lv
{"title":"Improved diffusion mapping combined with procrustes analysis for capturing local-global data structures in industrial process monitoring","authors":"Lingling Tong,&nbsp;Zhimin Lv","doi":"10.1016/j.jtice.2024.105747","DOIUrl":"10.1016/j.jtice.2024.105747","url":null,"abstract":"<div><h3>Background</h3><p>Process monitoring, by providing early warnings of abnormal operating states resulting from process faults, facilitates the maintenance of normal production and ensures process safety. In the domain of industrial process monitoring, capturing the local-global structural features of data and acquiring an explicit mapping relationship for dimensionality reduction projection holds significant importance for online fault detection in industrial processes.</p></div><div><h3>Methods</h3><p>This study introduces an Improved Diffusion Mapping and Procrustes analysis (IDM-P) method for this purpose. Initially, considering the multiscale and correlation among industrial data features, the Mahalanobis distance is incorporated to improve the diffusion mapping algorithm. Utilizing this method allows for the concurrent capture of both local and global data structures, leading to a more efficient extraction of data-representative features, which enhances the accuracy of fault detection. Procrustes analysis is then used to obtain an explicit mapping matrix between high-dimensional data and low-dimensional manifolds, improving the efficiency of the key feature extraction of the new samples. Finally, this matrix is utilized to construct process monitoring statistics for fault detection.</p></div><div><h3>Significant Findings</h3><p>The method's effectiveness was validated through experiments on the TEP dataset and actual industrial data, demonstrating that IDM-P maintains higher accuracy and achieves optimal fault detection compared to other methods.</p></div>","PeriodicalId":381,"journal":{"name":"Journal of the Taiwan Institute of Chemical Engineers","volume":"165 ","pages":"Article 105747"},"PeriodicalIF":5.5,"publicationDate":"2024-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142097304","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Enhancing oxygen permeability and water content in silicone hydrogels through carboxylic acid and surfactant incorporation 通过加入羧酸和表面活性剂提高硅酮水凝胶的透氧性和含水量
IF 5.5 3区 工程技术
Journal of the Taiwan Institute of Chemical Engineers Pub Date : 2024-08-31 DOI: 10.1016/j.jtice.2024.105745
Bo-Tau Liu, We-Chen Pan, Yi-Ting Lu, Kai-Ting Sun
{"title":"Enhancing oxygen permeability and water content in silicone hydrogels through carboxylic acid and surfactant incorporation","authors":"Bo-Tau Liu,&nbsp;We-Chen Pan,&nbsp;Yi-Ting Lu,&nbsp;Kai-Ting Sun","doi":"10.1016/j.jtice.2024.105745","DOIUrl":"10.1016/j.jtice.2024.105745","url":null,"abstract":"<div><h3>Background</h3><p>Silicone hydrogels are vital materials in fields like contact lenses, biomedicine, and electronic devices, prized for their unique properties including oxygen permeability and equilibrium water content (EWC). These features make them ideal for applications that require both breathability and moisture retention, enhancing their performance and comfort in various uses. Typically, enhancing the silicone content increases oxygen permeability but reduces EWC, creating a significant trade-off.</p></div><div><h3>Methods</h3><p>This study introduces an innovative approach using carboxylic acid and surfactant to address this challenge. The addition of carboxylic acid markedly boosts the EWC by increasing both freezable free water and bound water. Simultaneously, the surfactant enhances the connectivity within the silicone structure, mitigating the reduction in oxygen permeability and improving the material's ductility, which is often compromised by water absorption that restricts the motion of the silicone chains.</p></div><div><h3>Significant findings</h3><p>With these modifications, the silicone hydrogel achieves approximately 97 % transmittance at 550 nm, with oxygen permeability reaching 100.4 barrer and EWC at 58.4 %, representing improvements of 11.3 % and 61.3 %, respectively, compared to the original material. These results exceed many of the enhancements in silicone hydrogels previously reported in the literature.</p></div>","PeriodicalId":381,"journal":{"name":"Journal of the Taiwan Institute of Chemical Engineers","volume":"165 ","pages":"Article 105745"},"PeriodicalIF":5.5,"publicationDate":"2024-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142097305","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A green bulk modification for imparting a green VIPS membrane with antifouling properties 用于赋予绿色 VIPS 膜防污性能的绿色块体改性剂
IF 5.5 3区 工程技术
Journal of the Taiwan Institute of Chemical Engineers Pub Date : 2024-08-29 DOI: 10.1016/j.jtice.2024.105731
Antoine Venault, Yi-Ling Wu, Wen Xin Yen, Yung Chang
{"title":"A green bulk modification for imparting a green VIPS membrane with antifouling properties","authors":"Antoine Venault,&nbsp;Yi-Ling Wu,&nbsp;Wen Xin Yen,&nbsp;Yung Chang","doi":"10.1016/j.jtice.2024.105731","DOIUrl":"10.1016/j.jtice.2024.105731","url":null,"abstract":"<div><h3>Background</h3><p>Membrane preparation and membrane modification processes have long involved the use of toxic solvents. The present work proposes to only use envrionmentally-friendly solvents for both the fabrication and the surface modification of hydrophobic microfiltration membranes. In addition, coating processes for membrane modification are essentially surface modification processes. However, spray-coating may be a suitable method for both surface and bulk modification.</p></div><div><h3>Methods</h3><p>After dissolving poly(vinylidene fluoride) in dimethylsulfoxide, membranes were formed by the vapor-induced phase separation process, and then modified using an aqeous solution of an amphiphilic copolymer containing poly(ethylene glycol) methyl ether methacrylate units. Then, a variety of physicochemical techniques were employed to characterize the membrane structure and prove the effectiveness of the surface/bulk modification. Antifouling tests in static and dynamic conditions were conducted.</p></div><div><h3>Significant findings</h3><p>It is possible to reduce the water contact angle of the top surface of the membrane from 135° to 0° and that of the bottom surface from 126° to 0° within &lt;10 s, indicating successful hydrophilization of the membrane on the one hand, and top-to-bottom modification, despite solely exposing the top surface to the spray, on the other hand. This conclusion was confirmed by deidcated surface chemistry analyses. Besides, the membranes maintained their original highly porous and symmetric structure with light effects on surface porosity and pore size following the spray-coating process. The drasting improvement of hydrophilicity resulted in effective mitigation of fibrinogen adsorption (reduced by 85 %) and <em>Escherichia coli</em> adhesion (reduced by 86 %). Fouling during cyclic filtration involving a bacterial suspension was also effectively reduced with a flux recovery ratio of 53 % (against 37 % for a commercial hydrophilic membrane) and an irreversible flux decline ratio of 47 % (against 63 % for a commercial hydrophilic membrane) in the conditions of the test.</p></div>","PeriodicalId":381,"journal":{"name":"Journal of the Taiwan Institute of Chemical Engineers","volume":"165 ","pages":"Article 105731"},"PeriodicalIF":5.5,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142087932","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Module-based machine learning models using sigma profiles of organic linkers to predict gaseous adsorption in metal-organic frameworks 基于模块的机器学习模型,利用有机连接体的西格玛曲线预测金属有机框架中的气体吸附情况
IF 5.5 3区 工程技术
Journal of the Taiwan Institute of Chemical Engineers Pub Date : 2024-08-29 DOI: 10.1016/j.jtice.2024.105728
Ya-Hung Cheng , I-Ting Sung , Chieh-Ming Hsieh , Li-Chiang Lin
{"title":"Module-based machine learning models using sigma profiles of organic linkers to predict gaseous adsorption in metal-organic frameworks","authors":"Ya-Hung Cheng ,&nbsp;I-Ting Sung ,&nbsp;Chieh-Ming Hsieh ,&nbsp;Li-Chiang Lin","doi":"10.1016/j.jtice.2024.105728","DOIUrl":"10.1016/j.jtice.2024.105728","url":null,"abstract":"<div><h3>Background</h3><p>Metal-organic frameworks (MOFs) have drawn considerable attention for their potential in adsorption applications, such as gas separation and storage. Machine learning (ML) augmented high-throughput screening approaches have emerged as an effective strategy to expedite the materials search. Traditionally, ML models developed to predict the adsorption properties of MOFs rely on various geometrical and chemical descriptors. While these descriptors are effective, they tend to be specific to each MOF's unique structure, completely omitting the modular nature of MOFs.</p></div><div><h3>Methods</h3><p>A new approach is proposed in this study: a modular descriptor based on the sigma profile of MOF organic linkers. These sigma profiles effectively represent the chemical environment of organic linkers. With these profiles as input features, we train extreme gradient boosting (XGBoost) models to predict the Henry's coefficient (K<sub>H</sub>) of adsorption for hydrocarbons and acid gases in MOFs.</p></div><div><h3>Findings</h3><p>The results show that sigma profiles enhance the prediction accuracy and emerge as the most important features for hydrocarbon gases. This study highlights the potential of sigma profiles in developing accurate ML models for identifying optimal MOF adsorbents. Such an approach could also facilitate an inverse design of MOFs with targeted properties.</p></div>","PeriodicalId":381,"journal":{"name":"Journal of the Taiwan Institute of Chemical Engineers","volume":"165 ","pages":"Article 105728"},"PeriodicalIF":5.5,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142097303","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Indium vacancy modulated BiVO4/ZnIn2S4 for photoelectrochemical production of ammonia 用于光电化学生产氨的铟空位调制 BiVO4/ZnIn2S4
IF 5.5 3区 工程技术
Journal of the Taiwan Institute of Chemical Engineers Pub Date : 2024-08-27 DOI: 10.1016/j.jtice.2024.105724
Hongye Bai , Kangkang Jia , Pengjie Zhou , Lijing Liu , Xiaohong Wang , Weiqiang Fan
{"title":"Indium vacancy modulated BiVO4/ZnIn2S4 for photoelectrochemical production of ammonia","authors":"Hongye Bai ,&nbsp;Kangkang Jia ,&nbsp;Pengjie Zhou ,&nbsp;Lijing Liu ,&nbsp;Xiaohong Wang ,&nbsp;Weiqiang Fan","doi":"10.1016/j.jtice.2024.105724","DOIUrl":"10.1016/j.jtice.2024.105724","url":null,"abstract":"<div><h3>Background</h3><p>Photoelectrochemical (PEC) reduction of nitrate to produce ammonia (NIRR) is a green strategy for converting waste NO<sub>3</sub><sup>−</sup> into high-value chemicals. However, a lack of active sites and low selectivity still plague the single catalyst used to establish the PEC-NIRR system.</p></div><div><h3>Methods</h3><p>Here, we construct a BiVO<sub>4</sub>/V<sub>In</sub>-ZnIn<sub>2</sub>S<sub>4</sub> (BVO/V<sub>In</sub>-ZIS) heterostructure with indium vacancies. The introduction of indium vacancy significantly enhances the conversion of NO<sub>3</sub><sup>−</sup> to NH<sub>3</sub> by augmenting active sites and fostering carrier separation via the creation of a built-in electric field.</p></div><div><h3>Significant findings</h3><p>NH<sub>3</sub> yield of BVO/V<sub>In</sub>-ZIS heterostructure with moderate indium vacancy (BVO/V<sub>In</sub>-ZIS-m) has been promoted to 15.26 μg h<sup>−1</sup> cm<sup>−2</sup> (BVO/V<sub>In</sub>-ZIS-m), and NH<sub>3</sub> selectivity reaches 21.3 times that of NO<sub>2</sub><sup>−</sup>. The results of cyclic experiments further demonstrate that NH<sub>3</sub> yield of BVO/V<sub>In</sub>-ZIS-m has remained 98.4% after five cycles, due to its excellent durability. Therefore, this work demonstrates that indium vacancy could significantly modulate the PEC performance of BiVO<sub>4</sub> to achieve an efficient NH<sub>3</sub> production.</p></div>","PeriodicalId":381,"journal":{"name":"Journal of the Taiwan Institute of Chemical Engineers","volume":"165 ","pages":"Article 105724"},"PeriodicalIF":5.5,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142087220","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Facile construction of binary metal oxide heterojunction with hexagonal boron nitride nanohybrid electrocatalyst for the detection of flutamide 轻松构建用于检测氟他胺的二元金属氧化物异质结与六方氮化硼纳米杂化电催化剂
IF 5.5 3区 工程技术
Journal of the Taiwan Institute of Chemical Engineers Pub Date : 2024-08-27 DOI: 10.1016/j.jtice.2024.105706
Thangavelu Sakthi Priya , Tse-Wei Chen , Shen-Ming Chen , Thangavelu Kokulnathan , Faheem Ahmed , Afzal Hussain , Mohamed Fahad Alajmi
{"title":"Facile construction of binary metal oxide heterojunction with hexagonal boron nitride nanohybrid electrocatalyst for the detection of flutamide","authors":"Thangavelu Sakthi Priya ,&nbsp;Tse-Wei Chen ,&nbsp;Shen-Ming Chen ,&nbsp;Thangavelu Kokulnathan ,&nbsp;Faheem Ahmed ,&nbsp;Afzal Hussain ,&nbsp;Mohamed Fahad Alajmi","doi":"10.1016/j.jtice.2024.105706","DOIUrl":"10.1016/j.jtice.2024.105706","url":null,"abstract":"<div><h3>Background</h3><p>Flutamide (FU) is a potential anti-androgen drug significantly prescribed to all human beings. The high solubility and poor degradability of its metabolites can adversely affect the balance of the ecosystem. Therefore, developing an efficient and reliable technique to detect this pollutant is essential. Consequently, electrochemical sensors have been widely used for the monitoring of various real-world samples.</p></div><div><h3>Methods</h3><p>Hence, nickel-zinc oxide (NZO) with hexagonal boron nitride (h-BN) nanocomposite was prepared as a proficient electrocatalyst in FU detection. Several spectroscopic measurements were carried out to characterize the prepared materials. Our NZO/h-BN nanocomposite was utilized to modify the glassy carbon electrode (GCE) and its relative catalytic activity was scrutinized with impedance and various voltammetric techniques.</p></div><div><h3>Significant findings</h3><p>Based on the results, our NZO/h-BN/GCE sensor exhibited high conductance, appreciable linear ranges, low detection limit (0.002 μM), optimal sensitivity (2.149 µA µM<sup>−1</sup> cm<sup>−2</sup>), and high selectivity with good repeatability, and reproducibility results. Furthermore, the practical utility of the sensor was studied by monitoring FU in human and environmental samples. Based on the outcomes, our NZO/h-BN/GCE is a promising electrochemical platform for the detection of FU.</p></div>","PeriodicalId":381,"journal":{"name":"Journal of the Taiwan Institute of Chemical Engineers","volume":"165 ","pages":"Article 105706"},"PeriodicalIF":5.5,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142083251","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The catalytic deoxygenation reaction temperature and N2 gas flow rate influence the conversion of soybean fatty acids into Green Diesel 催化脱氧反应温度和 N2 气体流速对大豆脂肪酸转化为绿色柴油的影响
IF 5.5 3区 工程技术
Journal of the Taiwan Institute of Chemical Engineers Pub Date : 2024-08-26 DOI: 10.1016/j.jtice.2024.105700
R.S.R.M. Hafriz , S.H. Habib , N.A. Raof , S.Z. Razali , R. Yunus , N.M. Razali , A. Salmiaton
{"title":"The catalytic deoxygenation reaction temperature and N2 gas flow rate influence the conversion of soybean fatty acids into Green Diesel","authors":"R.S.R.M. Hafriz ,&nbsp;S.H. Habib ,&nbsp;N.A. Raof ,&nbsp;S.Z. Razali ,&nbsp;R. Yunus ,&nbsp;N.M. Razali ,&nbsp;A. Salmiaton","doi":"10.1016/j.jtice.2024.105700","DOIUrl":"10.1016/j.jtice.2024.105700","url":null,"abstract":"<div><h3>Background</h3><p>Green diesel is a promising alternative as a petroleum replacement given the worldwide demand for petroleum fuel. Environmental issues have drawn public attention and concerns towards advancing renewable energy development. A catalytic deoxygenation (deCOx) was carried out to produce green diesel from soybean oil (SO) using a low-cost NiO-doped calcined dolomite (NiO<img>CD) catalyst.</p></div><div><h3>Method</h3><p>The structure, chemical composition and morphology of NiO<img>CD were comprehensively characterized by XRF, BET, TPD-CO<sub>2</sub>, SEM and TEM. In this study, the effect of two operating parameters, reaction temperature and flow rate of nitrogen, was discovered using a one-factor-at-a-time (OFAT) optimisation study. In addition, the life cycle cost analysis (LCCA) of stepwise catalyst preparation and green diesel production has been performed.</p></div><div><h3>Significant findings</h3><p>An optimal reaction temperature of 420 °C was found to provide the highest yield of green diesel (47.13 wt.%) with an 83.51% hydrocarbon composition. The ideal nitrogen flow rate, however, was found to be 50 cm<sup>3</sup>/min, which produced 41.80 wt.% of green diesel with an 88.63% hydrocarbon composition. The deoxygenation reaction was significantly impacted by both reaction temperature and nitrogen flow rate. According to LCCA, NiO<img>CD catalyst has potential to lower the overall cost of producing green diesel compared to commercial zeolite catalysts.</p></div>","PeriodicalId":381,"journal":{"name":"Journal of the Taiwan Institute of Chemical Engineers","volume":"165 ","pages":"Article 105700"},"PeriodicalIF":5.5,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1876107024003584/pdfft?md5=2078a7c2276d1ce0f980fecd76a8fdbb&pid=1-s2.0-S1876107024003584-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142076448","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Sheep bone powder modified PVDF membrane for highlyefficient oil-in-water emulsion separation 用于高效水包油型乳液分离的羊骨粉改性 PVDF 膜
IF 5.5 3区 工程技术
Journal of the Taiwan Institute of Chemical Engineers Pub Date : 2024-08-26 DOI: 10.1016/j.jtice.2024.105730
Junshuang Zhang , Xingran Lao , Xiaofeng Jiang , Zonghang Li , Wenwen Feng , Lidan Chen
{"title":"Sheep bone powder modified PVDF membrane for highlyefficient oil-in-water emulsion separation","authors":"Junshuang Zhang ,&nbsp;Xingran Lao ,&nbsp;Xiaofeng Jiang ,&nbsp;Zonghang Li ,&nbsp;Wenwen Feng ,&nbsp;Lidan Chen","doi":"10.1016/j.jtice.2024.105730","DOIUrl":"10.1016/j.jtice.2024.105730","url":null,"abstract":"<div><h3>Background</h3><p>The wetting properties and roughness modification of membrane surfaces are crucial for their application in emulsion separation. However, traditional membrane modification methods suffer from high cost, complex preparation, and secondary pollution.</p></div><div><h3>Methods</h3><p>In this study, a novel, simple, and economical interfacial engineering method was developed using tannic acid (TA), sodium alginate (SA), and sheep bone powder (BP) as raw materials. Through vacuum filtration, these materials were deposited onto polyvinylidene fluoride (PVDF) membrane to fabricate superhydrophilic/underwater superoleophobic filtration membrane (PDBS). BP induced surface roughness and wetting properties to the membrane, while preserving the porous structure of the substrate membrane. The complex formed by TA and SA encapsulated BP onto the surface of PVDF microfiltration membrane, enhancing its mechanical properties.</p></div><div><h3>Significant Findings</h3><p>The prepared membrane exhibited a membrane flux of 347 Lm<sup>−2</sup>h<sup>−1</sup> bar<sup>−1</sup> and a separation efficiency of 99.9 % for emulsified oil. Furthermore, after soaking in NaCl solution for 30 h, the membrane still showed excellent stability. Therefore, this study developed a new membrane surface modification strategy with promising application prospects in oily wastewater treatment.</p></div>","PeriodicalId":381,"journal":{"name":"Journal of the Taiwan Institute of Chemical Engineers","volume":"165 ","pages":"Article 105730"},"PeriodicalIF":5.5,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142076449","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Rational design of amine-terminated terephthalate in bismuth metal-organic framework for boosting sunlight-catalytic removal of organic pollutants 合理设计金属有机铋框架中的胺封端对苯二甲酸酯,促进阳光催化去除有机污染物
IF 5.5 3区 工程技术
Journal of the Taiwan Institute of Chemical Engineers Pub Date : 2024-08-26 DOI: 10.1016/j.jtice.2024.105725
Dhanaprabhu Pattappan , Chen-Jie Liao , Raju Suresh Kumar , Sivalingam Ramesh , Ramasamy Thangavelu Rajendra Kumar , Woochul Yang , Yuvaraj Haldorai , Yi-Ting Lai
{"title":"Rational design of amine-terminated terephthalate in bismuth metal-organic framework for boosting sunlight-catalytic removal of organic pollutants","authors":"Dhanaprabhu Pattappan ,&nbsp;Chen-Jie Liao ,&nbsp;Raju Suresh Kumar ,&nbsp;Sivalingam Ramesh ,&nbsp;Ramasamy Thangavelu Rajendra Kumar ,&nbsp;Woochul Yang ,&nbsp;Yuvaraj Haldorai ,&nbsp;Yi-Ting Lai","doi":"10.1016/j.jtice.2024.105725","DOIUrl":"10.1016/j.jtice.2024.105725","url":null,"abstract":"<div><h3>Background</h3><p>Bismuth-based metal-organic frameworks (Bi-MOFs) have garnered significant interest in energy and environment-related applications. Here, we report a Bi-MOFs synthesized by amino terephthalic acid (Bi-MOF (ATP)) and Bi-MOF (CAU-17), the developed Bi-MOF (ATP) shows exceptional photocatalytic efficiency in degrading both cationic and anionic pollutants, crystal violet (CV) fast green (FG) under solar light exposure.</p></div><div><h3>Methods</h3><p>The CAU-17 and Bi-MOF (ATP) were prepared by the solvothermal method. However, only the Bi-MOF (ATP) ability to absorb visible spectrum and degradation of pollutants can be attributed to several factors, including the diminished particle sizes, mitigated recombination of charge carriers, oxidation of nitrogen during photocatalytic reactions, and a favorable bandgap of positioning within the visible spectrum.</p></div><div><h3>Significant findings</h3><p>The Mott-Schottky plot and electron paramagnetic resonance analyses confirmed a Bi-MOF (ATP) generated free radicals (·O<sub>2</sub>‾). The remarkable photocatalytic degradation of CV and FG can achieve 92 % and 95 %, respectively. Notably, the catalyst retains robust stability throughout reusability assessments, maintaining its degradation efficiency without compromising the integrity of its crystalline structure and morphology. This study sheds light on the promising potential of Bi-MOFs (ATP) as effective photocatalysts for pollution under solar light.</p></div>","PeriodicalId":381,"journal":{"name":"Journal of the Taiwan Institute of Chemical Engineers","volume":"165 ","pages":"Article 105725"},"PeriodicalIF":5.5,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142076450","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Scaling down recombinant carbonic anhydrase isolation with immobilized metal ion chromatography (IMAC): Harnessing enzymatic carbon dioxide capture and mineralization 利用固定金属离子色谱法(IMAC)扩大重组碳酸酐酶的分离规模:利用酶捕获二氧化碳并使其矿化
IF 5.5 3区 工程技术
Journal of the Taiwan Institute of Chemical Engineers Pub Date : 2024-08-24 DOI: 10.1016/j.jtice.2024.105727
Yi-Chuan Chang , Shen-Yuan Yang , Jia-Yih Lin , Nguyen The Duc Hanh , Penjit Srinophakun , Chen-Yaw Chiu , Bing-Lan Liu , I-Son Ng , Kuei-Hsiang Chen , Yu-Kaung Chang
{"title":"Scaling down recombinant carbonic anhydrase isolation with immobilized metal ion chromatography (IMAC): Harnessing enzymatic carbon dioxide capture and mineralization","authors":"Yi-Chuan Chang ,&nbsp;Shen-Yuan Yang ,&nbsp;Jia-Yih Lin ,&nbsp;Nguyen The Duc Hanh ,&nbsp;Penjit Srinophakun ,&nbsp;Chen-Yaw Chiu ,&nbsp;Bing-Lan Liu ,&nbsp;I-Son Ng ,&nbsp;Kuei-Hsiang Chen ,&nbsp;Yu-Kaung Chang","doi":"10.1016/j.jtice.2024.105727","DOIUrl":"10.1016/j.jtice.2024.105727","url":null,"abstract":"<div><h3>Background</h3><p>Human activities have led to increased atmospheric CO<sub>2</sub> levels, raising concerns about climate change. Carbonic anhydrase (CA) enzymes show promise for transforming CO<sub>2</sub> into valuable products like calcium carbonate (CaCO<sub>3</sub>) through mineralization. Purifying and immobilizing CA enzymes on nanofiber membranes enhances their catalytic activity, enabling efficient CO<sub>2</sub> conversion and mineralization.</p></div><div><h3>Methods</h3><p>Recombinant CA was purified using immobilized metal affinity chromatography (IMAC), optimizing pH, biomass concentration, flow rate, and loading volume for maximum efficiency. The CA enzyme was then immobilized onto a weak ion exchange nanofiber membrane functionalized with AEA-COOH to create the CA-modified membrane (AEA-COOH-CA), enhancing CO<sub>2</sub> conversion and CaCO<sub>3</sub> mineralization.</p></div><div><h3>Significant findings</h3><p>Optimal purification conditions (pH 7, 1 % biomass, 0.1 mL/min flow rate, 1.0 mL loading volume) were determined using IMAC. The CA-modified membrane effectively converted CO<sub>2</sub> and mineralized CaCO<sub>3</sub>, demonstrating the potential for environmental CO<sub>2</sub> sequestration. The immobilized CA activities of the AEA-COOH-CA nanofiber membranes exhibited 473.42 WAU/g-membrane, corresponding to 7.10 WAU per membrane piece. The CaCO<sub>3</sub> precipitation reached 83.90 mg, with a precipitation efficiency of 11.82 mg CaCO<sub>3</sub>/WAU. These findings underscore the promise of enzymatic carbon capture using CA-modified membranes, offering a sustainable solution for greenhouse gas mitigation.</p></div>","PeriodicalId":381,"journal":{"name":"Journal of the Taiwan Institute of Chemical Engineers","volume":"165 ","pages":"Article 105727"},"PeriodicalIF":5.5,"publicationDate":"2024-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142058594","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信