Journal of the Mechanical Behavior of Biomedical Materials最新文献

筛选
英文 中文
Research on silk fibroin composite materials for wet environment applications 用于潮湿环境的丝纤维素复合材料研究
IF 3.3 2区 医学
Journal of the Mechanical Behavior of Biomedical Materials Pub Date : 2024-10-12 DOI: 10.1016/j.jmbbm.2024.106777
Jialuo Chen , Zuqiang Yin , Guohongfang Tan , Tieling Xing , Subhas C. Kundu , Shenzhou Lu
{"title":"Research on silk fibroin composite materials for wet environment applications","authors":"Jialuo Chen ,&nbsp;Zuqiang Yin ,&nbsp;Guohongfang Tan ,&nbsp;Tieling Xing ,&nbsp;Subhas C. Kundu ,&nbsp;Shenzhou Lu","doi":"10.1016/j.jmbbm.2024.106777","DOIUrl":"10.1016/j.jmbbm.2024.106777","url":null,"abstract":"<div><div>Silk fibroin material has good mechanical properties and excellent biocompatibility as a natural biomaterial with broad application prospects. However, by applying regenerated silk fibroin in biomaterials with high mechanical strength requirements, such as bone materials, there are problems, such as insufficient mechanical properties and a significant decline in mechanical properties in the wet state. In this report, a silk fibroin composite that maintains high strength in the wet state was prepared by adding nano-SiO<sub>2</sub> as a nano-strengthening filler to the silk protein material and employing an epoxy-based silane coupling agent KH560 as an interfacial reinforcing agent. The results showed that the dry compressive strength of the composite material was substantially increased compared with that of the pure silk protein material; the wet compressive strength was significantly increased compared with that of the pure silk fibroin material, and the decrease of the mechanical properties in the wet state was low. The cytotoxicity test results of the composites showed that the materials were not cytotoxic. Rat bone marrow mesenchymal stem cells were cultured on the surface of the composites, and the results indicated that the composites could support the proliferation of bone marrow mesenchymal stem cells. The silk fibroin nanocomposites developed in this work can be applied as bone repair materials.</div></div>","PeriodicalId":380,"journal":{"name":"Journal of the Mechanical Behavior of Biomedical Materials","volume":"160 ","pages":"Article 106777"},"PeriodicalIF":3.3,"publicationDate":"2024-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142442419","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Elastic properties of 3D printed clavicles are closer to cadaveric bones of elderly donors than commercial synthetic bones 与商用合成骨相比,3D 打印锁骨的弹性特性更接近老年捐献者的尸骨
IF 3.3 2区 医学
Journal of the Mechanical Behavior of Biomedical Materials Pub Date : 2024-10-12 DOI: 10.1016/j.jmbbm.2024.106774
Kathryn S. Strand , Elizabeth Silvestro , Iman Naqvi , Michael W. Hast
{"title":"Elastic properties of 3D printed clavicles are closer to cadaveric bones of elderly donors than commercial synthetic bones","authors":"Kathryn S. Strand ,&nbsp;Elizabeth Silvestro ,&nbsp;Iman Naqvi ,&nbsp;Michael W. Hast","doi":"10.1016/j.jmbbm.2024.106774","DOIUrl":"10.1016/j.jmbbm.2024.106774","url":null,"abstract":"<div><div>Synthetic bone models have increasing utility in orthopaedic research due to their low cost and low variability and have been shown to be biomechanically equivalent to human bones in a variety of ways. The rise in additive manufacturing (AM) for orthopaedic applications presents an opportunity to construct synthetic whole-bone models for biomechanical testing applications, but there is a lack of research comparing these AM models to cadaveric or commercially available bone surrogates. This study compares the mechanical properties of 3D printed clavicle models to commercially available (4th generation Sawbones) and human cadaveric clavicles via nondestructive cyclic 4-point bending, axial compression, and torsion, and a final axial compression test to failure. Commercially available synthetic clavicles had 57.8–203% higher superior-inferior bending rigidity (p &lt; 0.0001), 80.9–198% higher axial stiffness (p &lt; 0.001), and 314–557% higher torsional rigidity (p &lt; 0.05) on average than AM and cadaveric clavicles. Cadaveric and AM clavicles printed from a BoneMatrix/VeroWhite composite material had similar failure mechanisms under axial compression while AM VeroWhite clavicles experienced catastrophic failure, but these groups did not have significantly different ultimate failure loads. Together, these results demonstrate that current commercially available synthetic clavicles may be too rigid to emulate the mechanical properties of elderly cadaveric clavicles, and that AM bone models can closely mimic these cadaveric bones in a variety of biomechanical loading schemes. These results show promising applications for future work using 3D printed bone surrogates for biomechanical analysis of orthopaedic implants and other surgical repair techniques.</div></div>","PeriodicalId":380,"journal":{"name":"Journal of the Mechanical Behavior of Biomedical Materials","volume":"160 ","pages":"Article 106774"},"PeriodicalIF":3.3,"publicationDate":"2024-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142432002","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mechanical properties of stromal striae, and their impact on corneal tissue behavior 基质条纹的机械特性及其对角膜组织行为的影响。
IF 3.3 2区 医学
Journal of the Mechanical Behavior of Biomedical Materials Pub Date : 2024-10-12 DOI: 10.1016/j.jmbbm.2024.106770
Qian Wu , Chloé Giraudet , Jean-Marc Allain
{"title":"Mechanical properties of stromal striae, and their impact on corneal tissue behavior","authors":"Qian Wu ,&nbsp;Chloé Giraudet ,&nbsp;Jean-Marc Allain","doi":"10.1016/j.jmbbm.2024.106770","DOIUrl":"10.1016/j.jmbbm.2024.106770","url":null,"abstract":"<div><div>Cornea is an essential element of our eye. The refractive power of the cornea is closely related to its shape, which depends on the balance between its mechanical properties and the intraocular pressure. However, in keratoconus, the shape of the cornea is altered, and the mechanical properties (i.e., elastic modulus and viscosity) are reduced. These alterations have been associated with the development of striae within the cornea. Recently, such striae have been observed in healthy corneas as well, but with slightly different shapes. Our study investigated the mechanical role of these striae. To this end, we performed an inflation test under Optical Coherence Tomography: tomographic volumes were acquired in the central zone of eleven human corneas during an inflation test. Striae planes were extracted from the segmented images, and principal deformation maps were obtained by Digital Volume Correlation (DVC). We observe that the pattern of the striae does not change with pressure, even far above physiological pressure. Maximum principal strains are co-localized with the striae and are oriented perpendicular to the striae. We also observe that principal deformations on the striae increase with depth in the cornea. Our results show that striae lead to greater deformability in the direction perpendicular to the striae, especially in the posterior part of the cornea where they are the most visible. This supports the idea that the striae are undulations in the cornea collagenous microstructure, which are progressively unfolded under loading. They decrease the global stiffness of the cornea, in particular in the posterior part, and thus may help in accommodating deformations.</div></div>","PeriodicalId":380,"journal":{"name":"Journal of the Mechanical Behavior of Biomedical Materials","volume":"160 ","pages":"Article 106770"},"PeriodicalIF":3.3,"publicationDate":"2024-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142484504","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Estimates of natural frequencies for nuclear vibration, and an assessment of the feasibility of selective ultrasound ablation of cancer cells 估算核振动的自然频率,评估选择性超声消融癌细胞的可行性
IF 3.3 2区 医学
Journal of the Mechanical Behavior of Biomedical Materials Pub Date : 2024-10-11 DOI: 10.1016/j.jmbbm.2024.106778
Bing Qi , Hao Zhang , Junhao Zhu , Ming Wang , Chiyuan Ma , Guy M. Genin , Tian Jian Lu , Shaobao Liu
{"title":"Estimates of natural frequencies for nuclear vibration, and an assessment of the feasibility of selective ultrasound ablation of cancer cells","authors":"Bing Qi ,&nbsp;Hao Zhang ,&nbsp;Junhao Zhu ,&nbsp;Ming Wang ,&nbsp;Chiyuan Ma ,&nbsp;Guy M. Genin ,&nbsp;Tian Jian Lu ,&nbsp;Shaobao Liu","doi":"10.1016/j.jmbbm.2024.106778","DOIUrl":"10.1016/j.jmbbm.2024.106778","url":null,"abstract":"<div><div>Selective ablation of cancer cells by ultrasound would be transformative for cancer therapy, but has not yet been possible. A key challenge is that cancerous and non-cancerous cells typically have similar acoustic impedance and are thus indistinguishable as materials in their responses to ultrasound. However, in certain cancers, cytoskeletal and nuclear lamin structures differ between healthy and malignant cells, opening the possibility of exploiting structural differences that manifest as different vibrational responses. To assess the possibility that the nuclei of certain cancerous cells might vibrate at different frequencies, we measured sizes and effective indentation moduli of a range of cancerous and non-cancerous cells from several cell lines and regions of the brain, and estimated the natural frequencies for nuclear vibration. Results suggest a potential difference in natural frequency for nuclear vibration between certain cancerous and non-cancerous cells, on the order of tens of kHz. This gap is potentially sufficient for selective ablation and motivates future experimentation on these specific cell types.</div></div>","PeriodicalId":380,"journal":{"name":"Journal of the Mechanical Behavior of Biomedical Materials","volume":"160 ","pages":"Article 106778"},"PeriodicalIF":3.3,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142442417","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Electrospun zeolitic imidazole framework-8 loaded silk fibroin/polycaprolactone nanofibrous scaffolds for biomedical application 用于生物医学应用的电纺沸石咪唑框架-8负载丝纤维素/聚己内酯纳米纤维支架
IF 3.3 2区 医学
Journal of the Mechanical Behavior of Biomedical Materials Pub Date : 2024-10-11 DOI: 10.1016/j.jmbbm.2024.106769
Mahbubur Rahman , Mohashin Kabir , Kun Li , Yiran Li , Shaojuan Chen , Shaohua Wu
{"title":"Electrospun zeolitic imidazole framework-8 loaded silk fibroin/polycaprolactone nanofibrous scaffolds for biomedical application","authors":"Mahbubur Rahman ,&nbsp;Mohashin Kabir ,&nbsp;Kun Li ,&nbsp;Yiran Li ,&nbsp;Shaojuan Chen ,&nbsp;Shaohua Wu","doi":"10.1016/j.jmbbm.2024.106769","DOIUrl":"10.1016/j.jmbbm.2024.106769","url":null,"abstract":"<div><div>The development of electrospun nanofibrous scaffolds (NFSs) have aroused much attraction in the field of biomedical engineering, due to their small fiber diameter, high specific surface area, and excellent extracellular matrix comparability. The main focus of this study is to design and fabricate novel zeolitic imidazole framework-8 (ZIF-8)-loaded silk fibrin/polycaprolactone (SF/PCL) nanofiber composite scaffolds by using the electrospinning strategy. Firstly, ZIF-8 was synthesized and characterized, which showed remarkable features in terms of shape, size, chemical and physical properties. Then, three different amounts of ZIF-8 were encapsulated into SF/PCL nanofibers during electrospinning, to investigate how the addition of ZIF-8 affected the morphology, and structure, as well as physical, mechanical, and biological properties of the nanofiber composite scaffolds. It was found that the addition of ZIF-8 didn't change the nanofibrous morphology of the composite scaffold, and no bead-like structure were found for the SF/PCL composite scaffolds loading with or without ZIF-8. The appropriate addition of ZIF-8 could significantly increase the mechanical properties of SF/PCL NFSs. The SF/PCL NFS containing 5% ZIF-8 showed high ultimate stress and initial modulus, which were 40.31 ± 2.31 MPa, and 569.19 ± 21.38 MPa, respectively. Furthermore, the MTT assay indicated that the pure SF/PCL scaffold and one with 1% ZIF-8 exhibited nearly identical cell compatibility toward human dermal fibroblast (HDF) cells, but some obvious cytotoxicity was observed with the increase of ZIF-8 content. However, the incorporation of ZIF-8 into SF/PCL NFSs was found to have excellent antibacterial rate against both <em>E. coli</em> and <em>S. aureus</em>. In all, the incorporation of 1% ZIF-8 could impart the SF/PCL NFS with balanced bio-function, making it a promising candidate for diverse biomedical applications such as tissue engineering and wound healing.</div></div>","PeriodicalId":380,"journal":{"name":"Journal of the Mechanical Behavior of Biomedical Materials","volume":"160 ","pages":"Article 106769"},"PeriodicalIF":3.3,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142442418","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Significantly less wear of UHMWPE rubbing against pyrocarbon than against CoCr 超高分子量聚乙烯与热碳摩擦产生的磨损明显低于与钴铬摩擦产生的磨损
IF 3.3 2区 医学
Journal of the Mechanical Behavior of Biomedical Materials Pub Date : 2024-10-09 DOI: 10.1016/j.jmbbm.2024.106768
Thomas J. Joyce , Ghassene Ouenzerfi , Goksu Kandemir , Ian Trail , Valentin Massardier , Rayan Othmani , Andre Pierre Schroder , Thierry Granjon , Michel Hassler , Ana-Maria Trunfio-Sfarghiu
{"title":"Significantly less wear of UHMWPE rubbing against pyrocarbon than against CoCr","authors":"Thomas J. Joyce ,&nbsp;Ghassene Ouenzerfi ,&nbsp;Goksu Kandemir ,&nbsp;Ian Trail ,&nbsp;Valentin Massardier ,&nbsp;Rayan Othmani ,&nbsp;Andre Pierre Schroder ,&nbsp;Thierry Granjon ,&nbsp;Michel Hassler ,&nbsp;Ana-Maria Trunfio-Sfarghiu","doi":"10.1016/j.jmbbm.2024.106768","DOIUrl":"10.1016/j.jmbbm.2024.106768","url":null,"abstract":"<div><div>The history of joint replacement can be framed as a battle to reduce wear. Pyrocarbon has been shown to be a low wear material, but can low wear against an ultra high molecular weight polyethylene (UHMWPE) counterface be achieved? To investigate this research question, a 50-station, clinically validated wear screening machine was used. Half the stations tested UHMWPE pins against pyrocarbon discs, and half the stations tested UHMWPE pins against cobalt chromium (CoCr) discs. The test rig ran at 1Hz, the nominal contact stress was 2.07 MPa, and testing ran to 5 million cycles. A biomimetic lubricant was used, it was replaced every 500,000 cycles. At the end of testing, the UHMWPE pins rubbing against pyrocarbon discs had a statistically significant reduced wear, compared with the UHMWPE pins rubbing against CoCr discs (p ≤ 0.01). Analysis of the discs at the end of testing showed greater adherence of phospholipids on the pyrocarbon discs than the CoCr discs. In turn, it was also seen that far less UHMWPE was attached to the pyrocarbon discs than to the CoCr discs. Based on this evidence, it is suggested that pyrocarbon surfaces are associated with reduced adhesive wear of UHMWPE compared with CoCr surfaces. In addition, at the end of testing, the CoCr discs were found to be significantly rougher than the pyrocarbon discs. Therefore, pyrocarbon maintained a smoother surface than CoCr, likely meaning that abrasive wear of UHMWPE was reduced compared with CoCr.</div></div>","PeriodicalId":380,"journal":{"name":"Journal of the Mechanical Behavior of Biomedical Materials","volume":"160 ","pages":"Article 106768"},"PeriodicalIF":3.3,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142432001","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A noninvasive measurement technique for the initial stiffness of the radial artery 桡动脉初始僵硬度的无创测量技术。
IF 3.3 2区 医学
Journal of the Mechanical Behavior of Biomedical Materials Pub Date : 2024-10-05 DOI: 10.1016/j.jmbbm.2024.106765
Yixing Zhang , Xue Feng , Mingxing Shi , Yinji Ma
{"title":"A noninvasive measurement technique for the initial stiffness of the radial artery","authors":"Yixing Zhang ,&nbsp;Xue Feng ,&nbsp;Mingxing Shi ,&nbsp;Yinji Ma","doi":"10.1016/j.jmbbm.2024.106765","DOIUrl":"10.1016/j.jmbbm.2024.106765","url":null,"abstract":"<div><div>Arterial stiffness carries significant implications for cardiovascular disease. Monitoring changes in arterial stiffness is integral to proactive health management, however, current noninvasive methods of quantifying stiffness in vivo rely primarily on linear tangent stiffness, making the measurements vulnerable to the variability of blood pressure and thereby affecting the accuracy in portraying the health status of the arteries. This study proposed a novel methodology for evaluating arterial stiffness that is unaffected by changes in blood pressure. Ultrasound detection techniques are applied to accurately chronicle changes in radial artery diameters across varied blood pressures. Incorporating blood pressure measurements, the initial diameter at cuff blockade, and vessel diameters at systolic and diastolic pressures enables inverse determination of the unstressed initial radial artery stiffness. This method accurately mirrors the results of in vitro experiments employing porcine blood vessels at physiological pressures. The results underscore the technique's ability to quantify arterial mechanical properties precisely. This study offers a groundbreaking strategy for fostering the early detection of atherosclerosis, and aiding artery health regulation.</div></div>","PeriodicalId":380,"journal":{"name":"Journal of the Mechanical Behavior of Biomedical Materials","volume":"160 ","pages":"Article 106765"},"PeriodicalIF":3.3,"publicationDate":"2024-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142396398","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Evaluating the influence on osteocyte mechanobiology within the lacunar-canalicular system for varying lacunar equancy and perilacunar elasticity: A multiscale fluid-structure interaction analysis 评估不同裂隙等度和裂隙周围弹性对裂隙-椎管系统内骨细胞机械生物学的影响:多尺度流体-结构相互作用分析。
IF 3.3 2区 医学
Journal of the Mechanical Behavior of Biomedical Materials Pub Date : 2024-10-04 DOI: 10.1016/j.jmbbm.2024.106767
Abhisek Gupta , Subrata Saha , Apurba Das , Amit Roy Chowdhury
{"title":"Evaluating the influence on osteocyte mechanobiology within the lacunar-canalicular system for varying lacunar equancy and perilacunar elasticity: A multiscale fluid-structure interaction analysis","authors":"Abhisek Gupta ,&nbsp;Subrata Saha ,&nbsp;Apurba Das ,&nbsp;Amit Roy Chowdhury","doi":"10.1016/j.jmbbm.2024.106767","DOIUrl":"10.1016/j.jmbbm.2024.106767","url":null,"abstract":"<div><div>The lacunar morphology and perilacunar tissue properties of osteocytes in bone can vary under different physiological and pathological conditions. How these alterations collectively change the overall micromechanics of osteocytes in the lacunar-canalicular system (LCS) of an osteon still requires special focus. Therefore, a Haversian canal and LCS-based osteon model was established to evaluate the changes in the hydrodynamic environment around osteocytes under physiological loading using fluid-structure interaction analysis, followed by a sub-modelled finite element analysis to assess the mechanical responses of osteocytes and their components. Osteocytes were modelled with detailed configurations, including cytoplasm, nucleus, and cytoskeleton, and parametric variations in lacunar equancy (L.Eq) and perilacunar elasticity (Pl.E) were considered within the osteon model. The study aimed to conduct a comparative study among osteon models with varying L. Eq and Pl. E to check the resulting differences in osteocyte mechanobiology. The results demonstrated that the average mechanical stimulation of each subcellular component of osteocytes increased with decreases in L. Eq and Pl. E, reflecting conditions typically seen in young, healthy bone as per previous literature. However, hydrodynamic responses, such as fluid flow and fluid shear stress on osteocytes, varied proportionally with the elasticity difference between the bone matrix and the perilacunar region during Pl. E variation. Additionally, the findings revealed that a minimal percentage of energy was used to transmit mechanical responses through microtubules from the cell membrane to the nucleus, and this energy percentage increased with higher L. Eq. The outcomes of the study could help to quantify how the osteocyte microenvironment and its mechanosensitivity within cortical bone changes with L. Eq and Pl. E alterations in different bone conditions, from young to aged and healthy to diseased.</div></div>","PeriodicalId":380,"journal":{"name":"Journal of the Mechanical Behavior of Biomedical Materials","volume":"160 ","pages":"Article 106767"},"PeriodicalIF":3.3,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142407341","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Therapeutic radiation directly alters bone fatigue strength and microdamage accumulation 治疗性辐射会直接改变骨疲劳强度和微损伤累积。
IF 3.3 2区 医学
Journal of the Mechanical Behavior of Biomedical Materials Pub Date : 2024-10-02 DOI: 10.1016/j.jmbbm.2024.106766
Tara E. Carney , Amy E. Biggs , Mark A. Miller , Kenneth A. Mann , Megan E. Oest
{"title":"Therapeutic radiation directly alters bone fatigue strength and microdamage accumulation","authors":"Tara E. Carney ,&nbsp;Amy E. Biggs ,&nbsp;Mark A. Miller ,&nbsp;Kenneth A. Mann ,&nbsp;Megan E. Oest","doi":"10.1016/j.jmbbm.2024.106766","DOIUrl":"10.1016/j.jmbbm.2024.106766","url":null,"abstract":"<div><div>Radiotherapy (RTx) is an essential and efficacious oncologic treatment, however, post-RTx bone fragility fractures present a challenging clinical problem. Cancer survivors treated with RTx are at variable risk for these late-onset, complex fragility fractures. Little data exists regarding the effects of RTx on bone fatigue properties despite the likelihood of fatigue loading as a mechanism leading up to atraumatic fracture. In this study, femurs collected from adult male rats were irradiated <em>ex vivo</em> with a therapeutic dose of x-irradiation (20 Gy), and then fatigued using a three-point bend setup. Femurs positioned in an isotonic bath at room temperature were loaded to a range of prescribed initial strain levels (based on beam theory equations, prior to any fatigue damage) at 3 Hz in force control. The goals of this study were to determine the feasibility of assessing RTx-induced alterations in 1) femur fatigue strength, 2) structural microdamage (creep and stiffness), and 3) tissue damage (diffuse damage and/or linear microcracking). Mid-diaphyseal morphology and tissue mineral density were not different between the RTx and Sham groups (p ≥ 0.35). With increasing applied apparent strain, the number of cycles to failure was reduced for the RTx femurs when compared to the Sham femurs (treatment x ε<sub>app</sub>, p = 0.041). RTx femurs had a greater phase II (steady state) creep rate (p = 0.0462) compared to Sham femurs. For femurs that reached 500k cycles, the RTx group had greater diffuse damage area (p = 0.015) than the Sham. This study provides evidence that radiation at therapeutic doses can directly diminish bone fatigue properties. This loss of fatigue properties is associated with increased structural fatigue damage and diffuse microdamage, without alterations in morphology or tissue mineral density, indicating a reduction in bone quality.</div></div>","PeriodicalId":380,"journal":{"name":"Journal of the Mechanical Behavior of Biomedical Materials","volume":"160 ","pages":"Article 106766"},"PeriodicalIF":3.3,"publicationDate":"2024-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142396399","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A new ex vivo model system to analyze factors affecting the integrity of fetal membranes in fetoscopic surgery 在胎儿镜手术中分析影响胎膜完整性因素的新型体外模型系统。
IF 3.3 2区 医学
Journal of the Mechanical Behavior of Biomedical Materials Pub Date : 2024-10-01 DOI: 10.1016/j.jmbbm.2024.106764
Serjosha Robmann , Raoul Hopf , Costanza Giampietro , Lukas Moser , Alexandra Dolder , Magdalena Sanz Cortes , Martin Ehrbar , Nicole Ochsenbein , Jan Deprest , Edoardo Mazza
{"title":"A new ex vivo model system to analyze factors affecting the integrity of fetal membranes in fetoscopic surgery","authors":"Serjosha Robmann ,&nbsp;Raoul Hopf ,&nbsp;Costanza Giampietro ,&nbsp;Lukas Moser ,&nbsp;Alexandra Dolder ,&nbsp;Magdalena Sanz Cortes ,&nbsp;Martin Ehrbar ,&nbsp;Nicole Ochsenbein ,&nbsp;Jan Deprest ,&nbsp;Edoardo Mazza","doi":"10.1016/j.jmbbm.2024.106764","DOIUrl":"10.1016/j.jmbbm.2024.106764","url":null,"abstract":"<div><div>We developed an <em>ex vivo</em> model system to analyze the influence of relevant environmental and mechanical factors potentially affecting the integrity of fetal membranes during fetoscopic surgery. The set-up exposes amniochorion membranes to insufflation at predefined levels of gas pressure, flow, humidity, and temperature. Change in fetal membranes stiffness is quantified during the phase mimicking surgery through measurement of membranes’ strain in response to cyclic overpressure. The trocar induced perforation creates a mechanical weakness whose stability is assessed by increasing the insufflation pressure until membrane rupture. Damage of the epithelial cells lining the amnion is assessed through live-dead staining. Initial experiments demonstrated the functionality of the new apparatus and the feasibility of the proposed protocols. Fetal membranes exposed to air with low humidity for approximately 1 h demonstrated significant embrittlement, while their mechanical integrity was maintained in case of gas insufflation at high humidity (air as well as CO<sub>2</sub>). Under dry circumstances, there was a significant rate of epithelial cell death. Separation of amnion and chorion in the region of the trocar site was visible in all experiments. This new model is a versatile platform for analyzing the mechanical, histological, and biological implications of fetoscopic surgery on fetal membranes.</div></div>","PeriodicalId":380,"journal":{"name":"Journal of the Mechanical Behavior of Biomedical Materials","volume":"160 ","pages":"Article 106764"},"PeriodicalIF":3.3,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142396397","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信