{"title":"轴突和矩阵的本构建模:一种有限元和神经网络方法","authors":"Maryam Majdolhosseini, Zhou Zhou, Svein Kleiven","doi":"10.1016/j.jmbbm.2025.107082","DOIUrl":null,"url":null,"abstract":"<div><div>Diffuse axon injury is a common trauma that affects the axons in the brain’s white matter. Computational models of axons, both in isolation and within the matrix, have been developed to study this injury at cellular and tissue levels. However, axonal behaviour depends strongly on the mechanical properties of the surrounding matrix. Accurate material properties of axons and the matrix are essential for realistic modelling of their behaviour. This study characterises the hyper-viscoelastic properties of axons and their matrix for human brain tissue in two different white matter regions. First, previous experimental data on isolated axons under tension were used to determine their mechanical properties. Then, employing finite element analysis, neural networks, and optimisation methods, matrix properties were inferred using experimental data on human brain tissue behaviour under three shear modes at large deformations and varying strain rates. The results indicate that axons are approximately 10–13 times stiffer than the surrounding matrix, depending on the region. The material properties defined in this study provide an accurate representation of axonal and matrix behaviour under injurious conditions, as they are based on large-strain and high-strain-rate data. The constitutive model can be used for a more precise assessment of the injury threshold and the mechanisms of diffuse axon injury at the cellular level.</div></div>","PeriodicalId":380,"journal":{"name":"Journal of the Mechanical Behavior of Biomedical Materials","volume":"170 ","pages":"Article 107082"},"PeriodicalIF":3.5000,"publicationDate":"2025-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Constitutive modelling of the axon and matrix: A finite element and neural network approach\",\"authors\":\"Maryam Majdolhosseini, Zhou Zhou, Svein Kleiven\",\"doi\":\"10.1016/j.jmbbm.2025.107082\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Diffuse axon injury is a common trauma that affects the axons in the brain’s white matter. Computational models of axons, both in isolation and within the matrix, have been developed to study this injury at cellular and tissue levels. However, axonal behaviour depends strongly on the mechanical properties of the surrounding matrix. Accurate material properties of axons and the matrix are essential for realistic modelling of their behaviour. This study characterises the hyper-viscoelastic properties of axons and their matrix for human brain tissue in two different white matter regions. First, previous experimental data on isolated axons under tension were used to determine their mechanical properties. Then, employing finite element analysis, neural networks, and optimisation methods, matrix properties were inferred using experimental data on human brain tissue behaviour under three shear modes at large deformations and varying strain rates. The results indicate that axons are approximately 10–13 times stiffer than the surrounding matrix, depending on the region. The material properties defined in this study provide an accurate representation of axonal and matrix behaviour under injurious conditions, as they are based on large-strain and high-strain-rate data. The constitutive model can be used for a more precise assessment of the injury threshold and the mechanisms of diffuse axon injury at the cellular level.</div></div>\",\"PeriodicalId\":380,\"journal\":{\"name\":\"Journal of the Mechanical Behavior of Biomedical Materials\",\"volume\":\"170 \",\"pages\":\"Article 107082\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2025-06-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the Mechanical Behavior of Biomedical Materials\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1751616125001985\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Mechanical Behavior of Biomedical Materials","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1751616125001985","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Constitutive modelling of the axon and matrix: A finite element and neural network approach
Diffuse axon injury is a common trauma that affects the axons in the brain’s white matter. Computational models of axons, both in isolation and within the matrix, have been developed to study this injury at cellular and tissue levels. However, axonal behaviour depends strongly on the mechanical properties of the surrounding matrix. Accurate material properties of axons and the matrix are essential for realistic modelling of their behaviour. This study characterises the hyper-viscoelastic properties of axons and their matrix for human brain tissue in two different white matter regions. First, previous experimental data on isolated axons under tension were used to determine their mechanical properties. Then, employing finite element analysis, neural networks, and optimisation methods, matrix properties were inferred using experimental data on human brain tissue behaviour under three shear modes at large deformations and varying strain rates. The results indicate that axons are approximately 10–13 times stiffer than the surrounding matrix, depending on the region. The material properties defined in this study provide an accurate representation of axonal and matrix behaviour under injurious conditions, as they are based on large-strain and high-strain-rate data. The constitutive model can be used for a more precise assessment of the injury threshold and the mechanisms of diffuse axon injury at the cellular level.
期刊介绍:
The Journal of the Mechanical Behavior of Biomedical Materials is concerned with the mechanical deformation, damage and failure under applied forces, of biological material (at the tissue, cellular and molecular levels) and of biomaterials, i.e. those materials which are designed to mimic or replace biological materials.
The primary focus of the journal is the synthesis of materials science, biology, and medical and dental science. Reports of fundamental scientific investigations are welcome, as are articles concerned with the practical application of materials in medical devices. Both experimental and theoretical work is of interest; theoretical papers will normally include comparison of predictions with experimental data, though we recognize that this may not always be appropriate. The journal also publishes technical notes concerned with emerging experimental or theoretical techniques, letters to the editor and, by invitation, review articles and papers describing existing techniques for the benefit of an interdisciplinary readership.