{"title":"Nested association mapping population in japonica rice: Development, characterization, and application in genome-wide association studies","authors":"","doi":"10.1016/j.cpb.2024.100401","DOIUrl":"10.1016/j.cpb.2024.100401","url":null,"abstract":"<div><div>Multiparental mapping populations hold great potential for dissecting quantitative traits and rapidly identifying genetic determinants. We developed a <em>japonica</em> nested association mapping population, KNU_NAM, comprising 880 lines derived from ten recombinant inbred lines (RILs) families of prominent varieties and the elite Korean variety Shindongjin. Genetic characterization of KNU_NAM revealed 48,159 polymorphic SNPs, with family counts ranging from 18,787 to 42,578 and an average of 30,019 SNPs per family. Further molecular diversity analysis of KNU_NAM indicated reduced population structure and broad genetic diversity. Genome-wide association studies (GWAS) on five morphological traits identified 47 significant marker-trait associations (MTAs), with a set of 18 MTAs located on chromosome 9. Linkage disequilibrium (LD) block analysis of this region revealed 15 haplotypes and identified five key genes associated with panicle architecture: <em>OsDEP1</em>, <em>OsEATB</em>, <em>OsLGD1</em>, and <em>OsSPL18</em>. Additionally, two non-synonymous MTAs on chromosome 7 were located on the exon of <em>OsPRR37/Ghd7.1</em>, a gene associated with plant height, heading date, and grain number per panicle. Further phenotypic performance analysis of haplotypes from these hotspot regions revealed significant differences in the targeted traits. The study validates the potential of KNU_NAM and GWAS for high-resolution genetic mapping in rice breeding programs, highlighting the utility of these populations for enhancing genetic diversity and improving trait selection in rice.</div></div>","PeriodicalId":38090,"journal":{"name":"Current Plant Biology","volume":null,"pages":null},"PeriodicalIF":5.4,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142526926","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Pyramiding of multiple resistant genes of blast and bacterial blight diseases in the background of rice (Oryza sativa) mega variety BRRI dhan29","authors":"","doi":"10.1016/j.cpb.2024.100400","DOIUrl":"10.1016/j.cpb.2024.100400","url":null,"abstract":"<div><div>Blast and bacterial blight (BB) are the two major rice diseases in the world including Bangladesh. In this study, BB resistance genes (<em>Xa21</em> and <em>xa13</em>) and blast resistance (<em>Pi9</em> and <em>Pb1</em>) genes were pyramided into a mega variety, BRRI dhan29 through marker-assisted backcross breeding. IRBB58 was used as a BB-resistant donor and Pi9-US2, and Pb1-US2 were used as blast-resistant donors. Backcross was done between BRRI dhan29 and donor parents to develop BC<sub>3</sub>F<sub>1</sub> population and then selfing was done to develop BC<sub>3</sub>F<sub>6</sub> population. BC<sub>3</sub>F<sub>2</sub> population was genotyped and phenotyped for segregation analysis and BC<sub>3</sub>F<sub>6</sub> was evaluated for genotyping, phenotyping and morphological traits and yields. Chi-square analysis of BC<sub>3</sub>F<sub>2</sub> data revealed that blast and BB resistance followed the single gene mendelian fashion (1:2:1 and 3:1). Two to four gene combinations were found in the advanced lines of the BC<sub>3</sub>F<sub>6</sub> population. The yield of the advanced lines ranged from 6.42 (t ha<sup>−1</sup>) to 9.5 (t ha<sup>−1</sup>) and they showed resistant against blast and BB with mean disease scores ranging from 0.67 to 2.33 and 0.33–2.33, respectively. Finally, eight lines having four genes (<em>xa13, Xa21, Pi9</em> and <em>Pb1</em>) were selected for multilocational (five locations) trials for yield performance and disease reaction. Mean yield data of eight advanced lines of all locations were varied from 6.48±0.15–8.38±0.11 t ha<sup>−1</sup> and all the lines showed resistant reactions against blast (score 0.53–1) and BB (score 0.6–0.87) disease. The highest yield was found in BR (Path) 13800-BC3–224–12 (G28, 8.38±0.11 t ha<sup>−1</sup>) followed by BR (Path) 13800-BC3–134–252 (G26, 8.28±0.08 t ha<sup>−1</sup>) and BR (Path) 13800-BC3–136–115 (G12, 8.24±0.07 t ha<sup>−1</sup>). Pyramided advanced lines of this study could be released as BB and blast-resistant varieties or could be utilized as donor parents in resistant breeding.</div></div>","PeriodicalId":38090,"journal":{"name":"Current Plant Biology","volume":null,"pages":null},"PeriodicalIF":5.4,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142526929","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Cryopreservation of Arum palaestinum plant callus as a strategy for mitigating extinction risks","authors":"","doi":"10.1016/j.cpb.2024.100402","DOIUrl":"10.1016/j.cpb.2024.100402","url":null,"abstract":"<div><div><em>Arum palaestinum</em> is a wild perennial plant commonly known as \"Al-Loof\" in Jordan. Due to overharvesting, climate change, and increasing demand, its natural populations are threatened with extinction. Cryopreservation, an effective method for conserving plant material at ultra-low temperatures, is explored for <em>A. palaestinum</em> calli. We investigated the applicability of encapsulation-vitrification (using different plant vitrification solutions (PVS) and incubation times), encapsulation-dehydration (using sucrose or sorbitol at different concentrations and dehydration times), and the v-cryoplate (using different pre-culture times and temperatures) techniques. In the encapsulation-vitrification experiment, a notable 82.4 % regrowth rate was achieved by desiccating calli in plant vitrification solution 2 (PVS2) for 10 minutes at 25 °C. The encapsulation-dehydration technique resulted in an 82.6 % regrowth rate by incubating calli for one day in low sucrose levels (0.1 M sucrose) following one hour of air dehydration, where the moisture content of the beads was 30 %. The moisture content of the beads decreased from 81 % before chemical and air dehydration to 71 % after 0 hours of air dehydration combined with chemical dehydration using 0.1 M sucrose or sorbitol. It further dropped to 30–34 % after one day of chemical dehydration with 0.1 M sucrose and 1 hour of air dehydration. The v-cryoplate technique successfully conserved calli, showing impressive survival and regrowth percentages (96.8 %) when the callus was pre-cultured with 0.3 M sucrose for three days at 5 °C. Temperature during pre-culture significantly influenced regrowth percentages in the v-cryoplate technique. The study establishes promising cryopreservation protocols for <em>A. palaestinum</em> calli, offering a means to conserve germplasm and contribute to environmental and biodiversity protection by reintroducing endangered plants to their native habitats.</div></div>","PeriodicalId":38090,"journal":{"name":"Current Plant Biology","volume":null,"pages":null},"PeriodicalIF":5.4,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142526841","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Promotion of gentiopicroside production and transcriptional responses of biosynthetic genes in adventitious root cultures of Gentiana scabra Bunge by elicitation with methyl jasmonate","authors":"","doi":"10.1016/j.cpb.2024.100397","DOIUrl":"10.1016/j.cpb.2024.100397","url":null,"abstract":"<div><div>Abiotic elicitors play a crucial role in regulating various aspects of plant growth, development, and specialized metabolism. This study aimed to further increase the gentiopicroside content by screening elicitor types, optimizing elicitation conditions, and estimating transcriptional responses of biosynthetic genes in the adventitious roots of <em>Gentiana scabra</em>. The results showed that methyl jasmonate (MeJA) was the most effective inducer for biomass accumulation in the adventitious roots of <em>G. scabra</em> among tested elicitors, with fresh weight (FW) and dry weight (DW) of 13.26 ± 0.57 g flask<sup>−1</sup> and 1.31 ± 0.25 g flask<sup>−1</sup>, respectively. The effects of the induction time and concentration of MeJA on the biomass and gentiopicroside content in the adventitious roots of <em>G. scabra</em> were investigated. The maximum FW (15.73 ± 0.41 g flask<sup>−1</sup>) and DW (1.51 ± 0.19 g flask<sup>−1</sup>) were obtained when the roots were cultured for 6 days in MS liquid medium containing 3.0 mg L<sup>−1</sup> 1-naphthlcetic acid (NAA) and 1.0 mg L<sup>−1</sup> kinetin (KT) at MeJA concentration of 100 μM L<sup>−1</sup>. Also, the gentiopicroside content significantly increased to 62.62 ± 0.27 mg g<sup>−1</sup> DW, and was 2.49 times higher than that for the nontreated control. The expression levels of 12 candidate gentiopicroside biosynthesis–related genes involved in the mevalonic acid (MVA), methyl erythritol phosphate (MEP), and secoiridoid pathways were estimated in the adventitious roots of <em>G. scabra</em> to further understand the transcriptional response to MeJA elicitation. Among these, 10 genes (<em>ACCT1</em>, <em>HMGR1</em>, <em>MCK1</em>, <em>MVD1</em>, <em>GPPS4</em>, <em>G10H</em>, <em>IS3</em>, <em>DL7H1</em>, <em>DXS5</em>, and <em>ISPH5</em>) were upregulated whereas <em>DXR1</em> and <em>IDI1</em> genes were downregulated in the adventitious roots of <em>G. scabra</em> compared with nontreated control, with significant differences having threshold <em>P</em> value ≤0.05. The transcriptional analyses revealed that 12 candidate genes were the key regulated genes in the gentiopicroside biosynthetic pathway. Overall, the findings provided a promising, feasible, and stable approach to utilizing MeJA elicitation to increase the production of valuable gentiopicroside. Additionally, they provided a foundation for future gentiopicroside biosynthesis through metabolic engineering strategies in the adventitious roots of <em>G. scabra</em>.</div></div>","PeriodicalId":38090,"journal":{"name":"Current Plant Biology","volume":null,"pages":null},"PeriodicalIF":5.4,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142526924","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Temporal changes in the proanthocyanidins to anthocyanins ratio during dormancy associate with bloom time variations in peach","authors":"","doi":"10.1016/j.cpb.2024.100393","DOIUrl":"10.1016/j.cpb.2024.100393","url":null,"abstract":"<div><div>Our previous research demonstrated that fall applications of ethephon, an ethylene-releasing plant growth regulator, delay bloom in peach, accompanied by changes in endogenous hormones, ROS, sugar metabolism, and transcriptomic profiles during bud dormancy phases (endodormancy and ecodormancy). In this study, floral bud tissues were collected from ethephon-treated and untreated trees at three time points (200, 600, and 1000 chilling hours, CH) during endodormancy and two points (1000 and 3000 growing degree hours, GDH) during ecodormancy. Using ultra-performance liquid chromatography time-of-flight mass spectrometry (UPLC-TOF/MS), we aimed to unravel the untargeted metabolic changes explaining ethephon-mediated bloom delay. Metabolite set-enrichment analysis (MSEA) revealed significant chemical group variations between dormancy phases, with a threefold increase in flavonoids during endodormancy and a doubling of organic and amino acids during ecodormancy. Further analysis of genes associated with the biosynthesis and transcriptional regulation of the flavonoid pathway showed that ethephon treatment upregulated genes associated with proanthocyanidin (PA) biosynthesis and downregulated genes related to anthocyanins (ACNs). We quantified PA and ACN contents in 12 peach cultivars with contrasting bloom times and chilling requirements (e.g. 727–1308 CH). Late-bloom cultivars had higher PA levels during endodormancy, while early-bloom cultivars had higher ACN levels during ecodormancy. Staining buds with 4-dimethylaminocinnamaldehyde (DMAC) dye revealed a decline in the PA/ACN ratio at later ecodormancy stages, correlating with bloom time. Integrated analysis of metabolite content and gene expression in late-bloom 'KV021779' and early-bloom 'John Boy' cultivars validated that late-blooming cultivars have higher PA levels during endodormancy, extending dormancy-release periods and resulting in later blooms.</div></div>","PeriodicalId":38090,"journal":{"name":"Current Plant Biology","volume":null,"pages":null},"PeriodicalIF":5.4,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142526925","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The transcription factor TaNF-YB4 overexpression in wheat increases plant vigor and yield","authors":"","doi":"10.1016/j.cpb.2024.100394","DOIUrl":"10.1016/j.cpb.2024.100394","url":null,"abstract":"<div><div>Addressing food security is a priority in developing countries. This study aimed to improve wheat yield by overexpressing the <em>TaNF-YB4</em> transcription factor, which is involved in carbon assimilation and stress tolerance. An expression cassette for <em>TaNF-YB4</em> was developed in a modified wheat transformation vector (pSB219) and examined through transient expression in <em>Nicotiana tabacum</em>, followed by <em>Agrobacterium</em>-mediated transformation of wheat variety FSD-2008. T<sub>0</sub> transgenic plants were propagated to obtain T<sub>3</sub> generation PCR-positive plants. Transgene expression was assessed in PCR-verified T<sub>2</sub> plants using RT-PCR and qRT-PCR at six weeks post-germination. qRT-PCR analysis using the ΔΔCT method indicated higher <em>TaNF-YB4</em> expression in transgenic lines than in the wild-type control plants. Improved agronomic and phenotypic traits were observed with a 6–36 % increase in 1000-grain weight in the selected transgenic lines. Root architecture assessments demonstrated enhanced root length, surface area, and projected area in transgenic lines compared with wild-type plants. Additionally, notable variances in total chlorophyll, protein, and sugar content levels were observed between the transgenic lines and control plants, demonstrating statistical significance with a p-value ≤ 0.05. This study indicates that low-level constitutive expression of <em>TaNF-YB4</em> can enhance wheat yield, presenting a viable strategy for improving wheat productivity.</div></div>","PeriodicalId":38090,"journal":{"name":"Current Plant Biology","volume":null,"pages":null},"PeriodicalIF":5.4,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142526927","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Green-synthesized carbon dots from ginger: Multifunctional agents against oral pathogens with biocompatibility in human gingival fibroblast cells","authors":"","doi":"10.1016/j.cpb.2024.100392","DOIUrl":"10.1016/j.cpb.2024.100392","url":null,"abstract":"<div><div>Persistent antibiotic use in treating oral infections often leads to drug resistance in pathogenic bacteria, notably impacting conditions like periodontitis. Addressing this challenge, the study pioneers the use of carbon dots (CDs) synthesized from ginger rhizomes (<em>Zingiber officinale</em>) as a novel biocompatible material. CDs were synthesized via the hydrothermal method, emphasizing a green approach, and comprehensively characterized for their optical properties and structural uniformity. The synthesized CDs showed a zeta potential of −24.9 mV, confirming the formation of stable and well-dispersed particles. Dynamic Light Scattering (DLS) confirmed an average particle size of 2.9 nm, thus validating the formation of CDs. Biomedical assessments demonstrated that the synthesized CDs were non-cytotoxic to human gingival fibroblast cell lines, with effective free radical scavenging activity and high total antioxidant capacity, as indicated by their IC50 values. CDs also exhibited moderate inhibition of protein denaturation compared to the standard. Moreover, they showed significant inhibitory effects against bacterial strains (<em>Pseudomonas aeruginosa</em>, <em>Lactobacillus acidophilus</em>, <em>Escherichia coli</em>, <em>Staphylococcus aureus</em>) and fungal strains (<em>Aspergillus niger</em>, <em>Candida albicans</em>) at minimal concentrations. Notably, CDs inhibited the growth of periodontal pathogens including <em>Aggregatibacter actinomycetemcomitans</em>, <em>Tannerella forsythia</em>, <em>Porphyromonas gingivalis</em>, and <em>Prevotella intermedia</em>. These findings underscore the potential of CDs as multifunctional agents possessing anti-inflammatory, antifungal, antioxidant, and antibacterial properties. Remarkably, they offer a promising alternative to conventional antibiotics, potentially revolutionizing oral healthcare. Their proven biocompatibility and potent bioactivity underscore their innovative potential in biomedical research. Future studies should further assess their efficacy <em>in vivo</em> to fully harness their clinical potential.</div></div>","PeriodicalId":38090,"journal":{"name":"Current Plant Biology","volume":null,"pages":null},"PeriodicalIF":5.4,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142433762","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"In-depth genome-wide characterization of MaNAC25 and MaNAC28 cold-responsive transcription factor binding sites in banana via DAP-Seq","authors":"","doi":"10.1016/j.cpb.2024.100389","DOIUrl":"10.1016/j.cpb.2024.100389","url":null,"abstract":"<div><div>Mapping transcription factor proteins' binding sites across the entire genome in banana is crucial for unveiling their transcriptional regulatory mechanisms and enhancing our understanding of their regulatory networks. Our study showed that DAP-Seq experiments identified MaNAC25 and MaNAC28 numerous binding peaks, mainly in the promoter regions, with strong signals near the transcription start site (TSS). Significantly, the discovery of new binding motifs for MaNAC28 excluding NAC core binding element CGTA/G indicates their potential as novel DNA binding motifs for NAC transcription factors in cold stress response. Moreover, MaNAC25 was found to chiefly influence biological processes and molecular functions, whereas MaNAC28 was more focused on molecular functions. Both MaNAC25 and MaNAC28 extended their regulatory networks by interacting with other transcription factors during cold stress. Therefore, DAP-Seq technology furnishes essential insights and a robust foundation for researching transcriptional regulatory mechanisms among diverse transcription factors and broadening their regulatory networks.</div></div>","PeriodicalId":38090,"journal":{"name":"Current Plant Biology","volume":null,"pages":null},"PeriodicalIF":5.4,"publicationDate":"2024-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142422760","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Genetic dissection of flour whiteness through genome-wide association analysis in common wheat (Triticum aestivum L.)","authors":"","doi":"10.1016/j.cpb.2024.100391","DOIUrl":"10.1016/j.cpb.2024.100391","url":null,"abstract":"<div><div>The color of flour products has an important influence on consumer acceptance. Flour color is largely determined and measured by the index of flour whiteness (FW) in China. In this study, an association population comprising 207 wheat (<em>Triticum aestivum</em>) accessions originating from seven countries was used for dissection of FW-related genetic loci through genome-wide association analysis. Six quantitative trait loci (QTLs) significantly associated with FW were identified, accounting for 7.87–16.53 % of the total phenotypic variation. Four KASP markers were developed from single-nucleotide polymorphisms associated with the QTLs <em>QFW.HAAS</em>-<em>1AS</em>, <em>QFW.HAAS-1BL</em>, <em>QFW.HAAS-5AL</em>, and <em>QFW.HAAS-7AL</em>. The phytoene synthase-encoding gene <em>TraesCS7A03G1357000</em> (<em>TaPsyA1</em>) was identified as a candidate gene for <em>QFW.HAAS-7AL</em>. Two allelic variants of <em>TaPsyA1</em> (designated <em>PsyA1-a</em> and <em>PsyA1-b</em>) were differentiated on the basis of a 37 bp insertion/deletion polymorphism in the second intron. <em>PsyA1-b</em> included the 37 bp insertion, which led to a translational frameshift in the gene and was associated with higher FW. The <em>PsyA1-a</em> allele lacked the 37 bp insertion and was classified into two haplotypes according to the number of repeated ‘TC’ units in a simple sequence repeat in the promoter region. Of the two <em>PsyA1-a</em> haplotypes, the Type 1 haplotype conferred higher FW, flour brightness, and flour redness, and lower yellow pigment content and flour yellowness. The KASP markers and <em>PsyA1</em> polymorphic markers developed in the present study are suitable for use in molecular marker-assisted selection for improvement of wheat FW.</div></div>","PeriodicalId":38090,"journal":{"name":"Current Plant Biology","volume":null,"pages":null},"PeriodicalIF":5.4,"publicationDate":"2024-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142422759","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The Serratia sp. strain C2 confers tomato tolerance to high salt, virus infection and both stresses in combination","authors":"","doi":"10.1016/j.cpb.2024.100390","DOIUrl":"10.1016/j.cpb.2024.100390","url":null,"abstract":"<div><div>Besides increasing plant growth, several Plant Growth Promoting Rhizobacteria (PGPR), can enhance tolerance to biotic and/or abiotic stresses of numerous plant species. While cultivated plants are frequently subject to combined stresses in the field, there is limited knowledge of the effect of PGPR on plants undergoing simultaneous stress conditions. Therefore, we tested the beneficial properties of the halotolerant PGPR <em>Serratia</em> sp. strain C2, previously shown to enhance salt stress tolerance in barley, on tomato plants exposed to salinity, to Potato Virus Y (PVY) infection, and both stresses simultaneously. In our experimental conditions, C2 inoculation improved tomato tolerance to salt stress and positively correlated with a 46–68 % decrease in the level of PVY RNA compared to non-inoculated tomato plants. Morphometric, physiological and biochemical analyses (e.g., chlorophyll, sugar and proline accumulation, oxidative stress status and NDVI) indicated that C2 treatments had beneficial effects on tomato growth under simple and combined stress conditions. This is the first report of a PGPR enhancing tolerance not only to individually induced salinity and PVY infection, but also to both stresses in combination. Moreover, the expression analysis of selected genes involved in stress responses and RNA silencing-mediated antiviral immunity suggests that C2 can interfere with distinct defence response pathways to enhance stress tolerance in tomato. These pioneering results support the perspective of using PGPR as multi-spectrum and multi-host biostimulants for improving plant growth and protection from biotic, abiotic, and combined stresses to promote sustainable crop production in the face of environmental changes.</div></div>","PeriodicalId":38090,"journal":{"name":"Current Plant Biology","volume":null,"pages":null},"PeriodicalIF":5.4,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142422758","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}