Terrestrial planetary plants: Essential preparations for interstellar migration

IF 4.5 Q1 PLANT SCIENCES
Xiumei Luo , Ying Wang , Jiasui Zhan , Maozhi Ren
{"title":"Terrestrial planetary plants: Essential preparations for interstellar migration","authors":"Xiumei Luo ,&nbsp;Ying Wang ,&nbsp;Jiasui Zhan ,&nbsp;Maozhi Ren","doi":"10.1016/j.cpb.2025.100544","DOIUrl":null,"url":null,"abstract":"<div><div>Interstellar migration offers great potential for expanding human habitable space. As a powerful entropy-reducing system, plants convert simple, disordered chemical elements into complex, ordered organic macromolecules. They are expected to grow successfully on some planets and meet the essential nutritional and medical requirements for future interstellar migration. Taking Mars as a model planet, we analyze the basic physical, chemical and biological laws of plant growth on the terrestrial planet and propose terrestrial planetary plants (TPPs) for future terrestrial planetary agriculture (TPA). Biotechnological improvement of 25 TPPs candidates screened from 450,000 plants would reduce the dependence of interstellar migrants on farmland, poultry, livestock and hospitals, thus achieving self-sufficiency in food and medicine on Mars and other terrestrial planets. The TPPs are expected to break the 10 % rule in traditional food chains and provide new insights into enhancing agricultural production and food security on the earth.</div></div>","PeriodicalId":38090,"journal":{"name":"Current Plant Biology","volume":"44 ","pages":"Article 100544"},"PeriodicalIF":4.5000,"publicationDate":"2025-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Plant Biology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214662825001124","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Interstellar migration offers great potential for expanding human habitable space. As a powerful entropy-reducing system, plants convert simple, disordered chemical elements into complex, ordered organic macromolecules. They are expected to grow successfully on some planets and meet the essential nutritional and medical requirements for future interstellar migration. Taking Mars as a model planet, we analyze the basic physical, chemical and biological laws of plant growth on the terrestrial planet and propose terrestrial planetary plants (TPPs) for future terrestrial planetary agriculture (TPA). Biotechnological improvement of 25 TPPs candidates screened from 450,000 plants would reduce the dependence of interstellar migrants on farmland, poultry, livestock and hospitals, thus achieving self-sufficiency in food and medicine on Mars and other terrestrial planets. The TPPs are expected to break the 10 % rule in traditional food chains and provide new insights into enhancing agricultural production and food security on the earth.
类地行星植物:星际迁移的必要准备
星际迁移为扩大人类可居住空间提供了巨大的潜力。作为一个强大的熵还原系统,植物将简单、无序的化学元素转化为复杂、有序的有机大分子。它们有望在一些行星上成功生长,并满足未来星际迁移所需的基本营养和医疗需求。以火星为模型行星,分析了类地行星上植物生长的基本物理、化学和生物规律,并为未来的类地行星农业(TPA)提出了类地行星植物(TPPs)。对从45万株植物中筛选出的25种TPPs候选植物进行生物技术改进,将减少星际移民对农田、家禽、牲畜和医院的依赖,从而在火星和其他类地行星上实现食品和药品的自给自足。tpp有望打破传统食物链中10% %的规则,并为加强农业生产和地球粮食安全提供新的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Current Plant Biology
Current Plant Biology Agricultural and Biological Sciences-Plant Science
CiteScore
10.90
自引率
1.90%
发文量
32
审稿时长
50 days
期刊介绍: Current Plant Biology aims to acknowledge and encourage interdisciplinary research in fundamental plant sciences with scope to address crop improvement, biodiversity, nutrition and human health. It publishes review articles, original research papers, method papers and short articles in plant research fields, such as systems biology, cell biology, genetics, epigenetics, mathematical modeling, signal transduction, plant-microbe interactions, synthetic biology, developmental biology, biochemistry, molecular biology, physiology, biotechnologies, bioinformatics and plant genomic resources.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信