Transactions of the American Mathematical Society, Series B最新文献

筛选
英文 中文
Rational curves on del Pezzo surfaces in positive characteristic del Pezzo曲面上具有正特征的有理曲线
Transactions of the American Mathematical Society, Series B Pub Date : 2021-10-01 DOI: 10.1090/btran/138
Roya Beheshti, Brian Lehmann, Eric Riedl, Sho Tanimoto
{"title":"Rational curves on del Pezzo surfaces in positive characteristic","authors":"Roya Beheshti, Brian Lehmann, Eric Riedl, Sho Tanimoto","doi":"10.1090/btran/138","DOIUrl":"https://doi.org/10.1090/btran/138","url":null,"abstract":"<p>We study the space of rational curves on del Pezzo surfaces in positive characteristic. For most primes <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"p\">\u0000 <mml:semantics>\u0000 <mml:mi>p</mml:mi>\u0000 <mml:annotation encoding=\"application/x-tex\">p</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula> we prove the irreducibility of the moduli space of rational curves of a given nef class, extending results of Testa in characteristic <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"0\">\u0000 <mml:semantics>\u0000 <mml:mn>0</mml:mn>\u0000 <mml:annotation encoding=\"application/x-tex\">0</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula>. We also investigate the principles of Geometric Manin’s Conjecture for weak del Pezzo surfaces. In the course of this investigation, we give examples of weak del Pezzo surfaces defined over <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"double-struck upper F 2 left-parenthesis t right-parenthesis\">\u0000 <mml:semantics>\u0000 <mml:mrow>\u0000 <mml:msub>\u0000 <mml:mrow class=\"MJX-TeXAtom-ORD\">\u0000 <mml:mi mathvariant=\"double-struck\">F</mml:mi>\u0000 </mml:mrow>\u0000 <mml:mn>2</mml:mn>\u0000 </mml:msub>\u0000 <mml:mo stretchy=\"false\">(</mml:mo>\u0000 <mml:mi>t</mml:mi>\u0000 <mml:mo stretchy=\"false\">)</mml:mo>\u0000 </mml:mrow>\u0000 <mml:annotation encoding=\"application/x-tex\">mathbb F_2(t)</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula> or <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"double-struck upper F 3 left-parenthesis t right-parenthesis\">\u0000 <mml:semantics>\u0000 <mml:mrow>\u0000 <mml:msub>\u0000 <mml:mrow class=\"MJX-TeXAtom-ORD\">\u0000 <mml:mi mathvariant=\"double-struck\">F</mml:mi>\u0000 </mml:mrow>\u0000 <mml:mrow class=\"MJX-TeXAtom-ORD\">\u0000 <mml:mn>3</mml:mn>\u0000 </mml:mrow>\u0000 </mml:msub>\u0000 <mml:mo stretchy=\"false\">(</mml:mo>\u0000 <mml:mi>t</mml:mi>\u0000 <mml:mo stretchy=\"false\">)</mml:mo>\u0000 </mml:mrow>\u0000 <mml:annotation encoding=\"application/x-tex\">mathbb {F}_{3}(t)</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula> such that the exceptional sets in Manin’s Conjecture are Zariski dense.</p>","PeriodicalId":377306,"journal":{"name":"Transactions of the American Mathematical Society, Series B","volume":"36 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"131259596","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 7
Varieties of general type with doubly exponential asymptotics 具有双指数渐近的一般型的变种
Transactions of the American Mathematical Society, Series B Pub Date : 2021-09-27 DOI: 10.1090/btran/125
L. Esser, B. Totaro, Chengxi Wang
{"title":"Varieties of general type with doubly exponential asymptotics","authors":"L. Esser, B. Totaro, Chengxi Wang","doi":"10.1090/btran/125","DOIUrl":"https://doi.org/10.1090/btran/125","url":null,"abstract":"We construct smooth projective varieties of general type with the smallest known volume and others with the most known vanishing plurigenera in high dimensions. The optimal volume bound is expected to decay doubly exponentially with dimension, and our examples achieve this decay rate. We also consider the analogous questions for other types of varieties. For example, in every dimension we conjecture the terminal Fano variety of minimal volume, and the canonical Calabi-Yau variety of minimal volume. In each case, our examples exhibit doubly exponential behavior.","PeriodicalId":377306,"journal":{"name":"Transactions of the American Mathematical Society, Series B","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"133077070","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 18
Ricci curvature integrals, local functionals, and the Ricci flow 里奇曲率积分,局部泛函,和里奇流
Transactions of the American Mathematical Society, Series B Pub Date : 2021-09-06 DOI: 10.1090/btran/155
Yuanqing Ma, Bing Wang
{"title":"Ricci curvature integrals, local functionals, and the Ricci flow","authors":"Yuanqing Ma, Bing Wang","doi":"10.1090/btran/155","DOIUrl":"https://doi.org/10.1090/btran/155","url":null,"abstract":"<p>Consider a Riemannian manifold <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"left-parenthesis upper M Superscript m Baseline comma g right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:mo stretchy=\"false\">(</mml:mo> <mml:msup> <mml:mi>M</mml:mi> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi>m</mml:mi> </mml:mrow> </mml:msup> <mml:mo>,</mml:mo> <mml:mi>g</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">(M^{m}, g)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> whose volume is the same as the standard sphere <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"left-parenthesis upper S Superscript m Baseline comma g Subscript r o u n d Baseline right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:mo stretchy=\"false\">(</mml:mo> <mml:msup> <mml:mi>S</mml:mi> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi>m</mml:mi> </mml:mrow> </mml:msup> <mml:mo>,</mml:mo> <mml:msub> <mml:mi>g</mml:mi> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi>r</mml:mi> <mml:mi>o</mml:mi> <mml:mi>u</mml:mi> <mml:mi>n</mml:mi> <mml:mi>d</mml:mi> </mml:mrow> </mml:msub> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">(S^{m}, g_{round})</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. If <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"p greater-than StartFraction m Over 2 EndFraction\"> <mml:semantics> <mml:mrow> <mml:mi>p</mml:mi> <mml:mspace width=\"negativethinmathspace\" /> <mml:mo>></mml:mo> <mml:mspace width=\"negativethinmathspace\" /> <mml:mfrac> <mml:mi>m</mml:mi> <mml:mn>2</mml:mn> </mml:mfrac> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">p!>!frac {m}{2}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"integral Underscript upper M Endscripts left-brace upper R c minus left-parenthesis m minus 1 right-parenthesis g right-brace Subscript minus Superscript p Baseline d v\"> <mml:semantics> <mml:mrow> <mml:msub> <mml:mo>∫<!-- ∫ --></mml:mo> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi>M</mml:mi> </mml:mrow> </mml:msub> <mml:mspace width=\"negativethinmathspace\" /> <mml:msubsup> <mml:mrow> <mml:mo>{</mml:mo> <mml:mi>R</mml:mi> <mml:mi>c</mml:mi> <mm","PeriodicalId":377306,"journal":{"name":"Transactions of the American Mathematical Society, Series B","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"129496820","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
On Floer minimal knots in sutured manifolds 在花上最小的结在缝合的流形
Transactions of the American Mathematical Society, Series B Pub Date : 2021-08-24 DOI: 10.1090/btran/105
Zhenkun Li, Yi Xie, Boyu Zhang
{"title":"On Floer minimal knots in sutured manifolds","authors":"Zhenkun Li, Yi Xie, Boyu Zhang","doi":"10.1090/btran/105","DOIUrl":"https://doi.org/10.1090/btran/105","url":null,"abstract":"<p>Suppose <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"left-parenthesis upper M comma gamma right-parenthesis\">\u0000 <mml:semantics>\u0000 <mml:mrow>\u0000 <mml:mo stretchy=\"false\">(</mml:mo>\u0000 <mml:mi>M</mml:mi>\u0000 <mml:mo>,</mml:mo>\u0000 <mml:mi>γ<!-- γ --></mml:mi>\u0000 <mml:mo stretchy=\"false\">)</mml:mo>\u0000 </mml:mrow>\u0000 <mml:annotation encoding=\"application/x-tex\">(M, gamma )</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula> is a balanced sutured manifold and <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper K\">\u0000 <mml:semantics>\u0000 <mml:mi>K</mml:mi>\u0000 <mml:annotation encoding=\"application/x-tex\">K</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula> is a rationally null-homologous knot in <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper M\">\u0000 <mml:semantics>\u0000 <mml:mi>M</mml:mi>\u0000 <mml:annotation encoding=\"application/x-tex\">M</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula>. It is known that the rank of the sutured Floer homology of <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper M minus upper N left-parenthesis upper K right-parenthesis\">\u0000 <mml:semantics>\u0000 <mml:mrow>\u0000 <mml:mi>M</mml:mi>\u0000 <mml:mi class=\"MJX-variant\" mathvariant=\"normal\">∖<!-- ∖ --></mml:mi>\u0000 <mml:mi>N</mml:mi>\u0000 <mml:mo stretchy=\"false\">(</mml:mo>\u0000 <mml:mi>K</mml:mi>\u0000 <mml:mo stretchy=\"false\">)</mml:mo>\u0000 </mml:mrow>\u0000 <mml:annotation encoding=\"application/x-tex\">Mbackslash N(K)</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula> is at least twice the rank of the sutured Floer homology of <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper M\">\u0000 <mml:semantics>\u0000 <mml:mi>M</mml:mi>\u0000 <mml:annotation encoding=\"application/x-tex\">M</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula>. This paper studies the properties of <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper K\">\u0000 <mml:semantics>\u0000 <mml:mi>K</mml:mi>\u0000 <mml:annotation encoding=\"application/x-tex\">K</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula> when the equality is achieved for instanton homology. As an application, we show that if <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper L subset-of upper S cubed\">\u0000 <mml:semantics>\u0000 <mml:mrow>\u0000 <mml:mi>L</mml:mi>\u0000 <mml:mo>⊂<!-- ⊂ --></mml:mo>\u0000 <mml:msup>\u0000 <mml:mi>S</mml:mi>\u0000 <mml:mn>3</mml:mn>\u0000 </mml:msup>\u0000 </mml:mrow>\u0000 <mml:annotation encoding=\"application/x-tex\">Lsubset S^3</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000","PeriodicalId":377306,"journal":{"name":"Transactions of the American Mathematical Society, Series B","volume":"79 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"126337158","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Volume bound for the canonical lift complement of a random geodesic 随机测地线的正则升力补的体积界
Transactions of the American Mathematical Society, Series B Pub Date : 2021-08-19 DOI: 10.1090/btran/152
Tommaso Cremaschi, Yannick Krifka, D'idac Mart'inez-Granado, Franco Vargas Pallete
{"title":"Volume bound for the canonical lift complement of a random geodesic","authors":"Tommaso Cremaschi, Yannick Krifka, D'idac Mart'inez-Granado, Franco Vargas Pallete","doi":"10.1090/btran/152","DOIUrl":"https://doi.org/10.1090/btran/152","url":null,"abstract":"Given a filling primitive geodesic curve in a closed hyperbolic surface one obtains a hyperbolic three-manifold as the complement of the curve's canonical lift to the projective tangent bundle. In this paper we give the first known lower bound for the volume of these manifolds in terms of the length of generic curves. We show that estimating the volume from below can be reduced to a counting problem in the unit tangent bundle and solve it by applying an exponential multiple mixing result for the geodesic flow.","PeriodicalId":377306,"journal":{"name":"Transactions of the American Mathematical Society, Series B","volume":"3 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"127541427","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Equi-Lipschitz minimizing trajectories for non coercive, discontinuous, non convex Bolza controlled-linear optimal control problems 非强制、不连续、非凸Bolza控制线性最优控制问题的equii - lipschitz最小化轨迹
Transactions of the American Mathematical Society, Series B Pub Date : 2021-07-06 DOI: 10.1090/btran/80
C. Mariconda
{"title":"Equi-Lipschitz minimizing trajectories for non coercive, discontinuous, non convex Bolza controlled-linear optimal control problems","authors":"C. Mariconda","doi":"10.1090/btran/80","DOIUrl":"https://doi.org/10.1090/btran/80","url":null,"abstract":"<p>This article deals with the Lipschitz regularity of the “approximate” minimizers for the Bolza type control functional of the form <disp-formula content-type=\"math/mathml\">\u0000[\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper J Subscript t Baseline left-parenthesis y comma u right-parenthesis colon-equal integral Subscript t Superscript upper T Baseline normal upper Lamda left-parenthesis s comma y left-parenthesis s right-parenthesis comma u left-parenthesis s right-parenthesis right-parenthesis d s plus g left-parenthesis y left-parenthesis upper T right-parenthesis right-parenthesis\">\u0000 <mml:semantics>\u0000 <mml:mrow>\u0000 <mml:msub>\u0000 <mml:mi>J</mml:mi>\u0000 <mml:mi>t</mml:mi>\u0000 </mml:msub>\u0000 <mml:mo stretchy=\"false\">(</mml:mo>\u0000 <mml:mi>y</mml:mi>\u0000 <mml:mo>,</mml:mo>\u0000 <mml:mi>u</mml:mi>\u0000 <mml:mo stretchy=\"false\">)</mml:mo>\u0000 <mml:mo>≔</mml:mo>\u0000 <mml:msubsup>\u0000 <mml:mo>∫<!-- ∫ --></mml:mo>\u0000 <mml:mi>t</mml:mi>\u0000 <mml:mi>T</mml:mi>\u0000 </mml:msubsup>\u0000 <mml:mi mathvariant=\"normal\">Λ<!-- Λ --></mml:mi>\u0000 <mml:mo stretchy=\"false\">(</mml:mo>\u0000 <mml:mi>s</mml:mi>\u0000 <mml:mo>,</mml:mo>\u0000 <mml:mi>y</mml:mi>\u0000 <mml:mo stretchy=\"false\">(</mml:mo>\u0000 <mml:mi>s</mml:mi>\u0000 <mml:mo stretchy=\"false\">)</mml:mo>\u0000 <mml:mo>,</mml:mo>\u0000 <mml:mi>u</mml:mi>\u0000 <mml:mo stretchy=\"false\">(</mml:mo>\u0000 <mml:mi>s</mml:mi>\u0000 <mml:mo stretchy=\"false\">)</mml:mo>\u0000 <mml:mo stretchy=\"false\">)</mml:mo>\u0000 <mml:mspace width=\"thinmathspace\" />\u0000 <mml:mi>d</mml:mi>\u0000 <mml:mi>s</mml:mi>\u0000 <mml:mo>+</mml:mo>\u0000 <mml:mi>g</mml:mi>\u0000 <mml:mo stretchy=\"false\">(</mml:mo>\u0000 <mml:mi>y</mml:mi>\u0000 <mml:mo stretchy=\"false\">(</mml:mo>\u0000 <mml:mi>T</mml:mi>\u0000 <mml:mo stretchy=\"false\">)</mml:mo>\u0000 <mml:mo stretchy=\"false\">)</mml:mo>\u0000 </mml:mrow>\u0000 <mml:annotation encoding=\"application/x-tex\">J_t(y,u)≔int _t^TLambda (s,y(s), u(s)),ds+g(y(T))</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000]\u0000</disp-formula> among the pairs <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"left-parenthesis y comma u right-parenthesis\">\u0000 <mml:semantics>\u0000 <mml:mrow>\u0000 <mml:mo stretchy=\"false\">(</mml:mo>\u0000 <mml:mi>y</mml:mi>\u0000 <mml:mo>,</mml:mo>\u0000 <mml:mi>u</mml:mi>\u0000 <mml:mo stretchy=\"false\">)</mml:mo>\u0000 </mml:mrow>\u0000 <mml:annotation encoding=\"application/x-tex\">(y,u)</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula> satisfying a prescribed initial condition <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"y left-parenthesis t right-parenthesis equals x\">\u0000 <mml:semantics>\u0000 <mml:mrow>\u0000 <mml:mi>y</mml:mi>\u0000 <mml:mo stretchy=\"false\">(</mml:mo>\u0000 <mml:mi>t</mml:mi>\u0000 <mml:mo stretchy=\"false\">)</mml:mo>\u0000 <mml:mo>=</mml:mo>\u0000 <mml:mi>x</mml:m","PeriodicalId":377306,"journal":{"name":"Transactions of the American Mathematical Society, Series B","volume":"139 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"123251146","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
Critical point counts in knot cobordisms: abelian and metacyclic invariants 结协中的临界点计数:阿贝尔和亚循环不变量
Transactions of the American Mathematical Society, Series B Pub Date : 2021-06-30 DOI: 10.1090/btran/139
C. Livingston
{"title":"Critical point counts in knot cobordisms: abelian and metacyclic invariants","authors":"C. Livingston","doi":"10.1090/btran/139","DOIUrl":"https://doi.org/10.1090/btran/139","url":null,"abstract":"<p>For a pair of knots <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper K 1\">\u0000 <mml:semantics>\u0000 <mml:msub>\u0000 <mml:mi>K</mml:mi>\u0000 <mml:mn>1</mml:mn>\u0000 </mml:msub>\u0000 <mml:annotation encoding=\"application/x-tex\">K_1</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula> and <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper K 0\">\u0000 <mml:semantics>\u0000 <mml:msub>\u0000 <mml:mi>K</mml:mi>\u0000 <mml:mn>0</mml:mn>\u0000 </mml:msub>\u0000 <mml:annotation encoding=\"application/x-tex\">K_0</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula>, we consider the set of four-tuples of integers <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"left-parenthesis g comma c 0 comma c 1 comma c 2 right-parenthesis\">\u0000 <mml:semantics>\u0000 <mml:mrow>\u0000 <mml:mo stretchy=\"false\">(</mml:mo>\u0000 <mml:mi>g</mml:mi>\u0000 <mml:mo>,</mml:mo>\u0000 <mml:msub>\u0000 <mml:mi>c</mml:mi>\u0000 <mml:mn>0</mml:mn>\u0000 </mml:msub>\u0000 <mml:mo>,</mml:mo>\u0000 <mml:msub>\u0000 <mml:mi>c</mml:mi>\u0000 <mml:mn>1</mml:mn>\u0000 </mml:msub>\u0000 <mml:mo>,</mml:mo>\u0000 <mml:msub>\u0000 <mml:mi>c</mml:mi>\u0000 <mml:mn>2</mml:mn>\u0000 </mml:msub>\u0000 <mml:mo stretchy=\"false\">)</mml:mo>\u0000 </mml:mrow>\u0000 <mml:annotation encoding=\"application/x-tex\">(g, c_0,c_1, c_2)</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula> for which there is a cobordism from <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper K 1\">\u0000 <mml:semantics>\u0000 <mml:msub>\u0000 <mml:mi>K</mml:mi>\u0000 <mml:mn>1</mml:mn>\u0000 </mml:msub>\u0000 <mml:annotation encoding=\"application/x-tex\">K_1</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula> to <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper K 0\">\u0000 <mml:semantics>\u0000 <mml:msub>\u0000 <mml:mi>K</mml:mi>\u0000 <mml:mn>0</mml:mn>\u0000 </mml:msub>\u0000 <mml:annotation encoding=\"application/x-tex\">K_0</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula> of genus <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"g\">\u0000 <mml:semantics>\u0000 <mml:mi>g</mml:mi>\u0000 <mml:annotation encoding=\"application/x-tex\">g</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula> having <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"c Subscript i\">\u0000 <mml:semantics>\u0000 <mml:msub>\u0000 <mml:mi>c</mml:mi>\u0000 <mml:mi>i</mml:mi>\u0000 </mml:msub>\u0000 <mml:annotation encoding=\"application/x-tex\">c_i</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula> critical points of each index <inline-formula content-type=\"math/mathml\">\u0000<mml:mat","PeriodicalId":377306,"journal":{"name":"Transactions of the American Mathematical Society, Series B","volume":"37 36","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"114047058","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Cohomology ring of tree braid groups and exterior face rings 树辫群的上同环与外面环
Transactions of the American Mathematical Society, Series B Pub Date : 2021-06-24 DOI: 10.1090/btran/131
Jes'us Gonz'alez, Teresa I. Hoekstra-Mendoza
{"title":"Cohomology ring of tree braid groups and exterior face rings","authors":"Jes'us Gonz'alez, Teresa I. Hoekstra-Mendoza","doi":"10.1090/btran/131","DOIUrl":"https://doi.org/10.1090/btran/131","url":null,"abstract":"<p>For a tree <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper T\">\u0000 <mml:semantics>\u0000 <mml:mi>T</mml:mi>\u0000 <mml:annotation encoding=\"application/x-tex\">T</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula> and a positive integer <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"n\">\u0000 <mml:semantics>\u0000 <mml:mi>n</mml:mi>\u0000 <mml:annotation encoding=\"application/x-tex\">n</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula>, let <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper B Subscript n Baseline upper T\">\u0000 <mml:semantics>\u0000 <mml:mrow>\u0000 <mml:msub>\u0000 <mml:mi>B</mml:mi>\u0000 <mml:mi>n</mml:mi>\u0000 </mml:msub>\u0000 <mml:mi>T</mml:mi>\u0000 </mml:mrow>\u0000 <mml:annotation encoding=\"application/x-tex\">B_nT</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula> denote the <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"n\">\u0000 <mml:semantics>\u0000 <mml:mi>n</mml:mi>\u0000 <mml:annotation encoding=\"application/x-tex\">n</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula>-strand braid group on <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper T\">\u0000 <mml:semantics>\u0000 <mml:mi>T</mml:mi>\u0000 <mml:annotation encoding=\"application/x-tex\">T</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula>. We use discrete Morse theory techniques to show that the cohomology ring <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper H Superscript asterisk Baseline left-parenthesis upper B Subscript n Baseline upper T right-parenthesis\">\u0000 <mml:semantics>\u0000 <mml:mrow>\u0000 <mml:msup>\u0000 <mml:mi>H</mml:mi>\u0000 <mml:mo>∗<!-- ∗ --></mml:mo>\u0000 </mml:msup>\u0000 <mml:mo stretchy=\"false\">(</mml:mo>\u0000 <mml:msub>\u0000 <mml:mi>B</mml:mi>\u0000 <mml:mi>n</mml:mi>\u0000 </mml:msub>\u0000 <mml:mi>T</mml:mi>\u0000 <mml:mo stretchy=\"false\">)</mml:mo>\u0000 </mml:mrow>\u0000 <mml:annotation encoding=\"application/x-tex\">H^*(B_nT)</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula> is encoded by an explicit abstract simplicial complex <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper K Subscript n Baseline upper T\">\u0000 <mml:semantics>\u0000 <mml:mrow>\u0000 <mml:msub>\u0000 <mml:mi>K</mml:mi>\u0000 <mml:mi>n</mml:mi>\u0000 </mml:msub>\u0000 <mml:mi>T</mml:mi>\u0000 </mml:mrow>\u0000 <mml:annotation encoding=\"application/x-tex\">K_nT</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula> that measures <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"n\">\u0000 <mml:seman","PeriodicalId":377306,"journal":{"name":"Transactions of the American Mathematical Society, Series B","volume":"67 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"123008913","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
Shift modules, strongly stable ideals, and their dualities 移位模、强稳定理想及其对偶性
Transactions of the American Mathematical Society, Series B Pub Date : 2021-05-30 DOI: 10.1090/btran/137
Gunnar Fløystad
{"title":"Shift modules, strongly stable ideals, and their dualities","authors":"Gunnar Fløystad","doi":"10.1090/btran/137","DOIUrl":"https://doi.org/10.1090/btran/137","url":null,"abstract":"We enrich the setting of strongly stable ideals (SSI): We introduce shift modules, a module category encompassing SSIs. The recently introduced duality on SSIs is given an effective conceptual and computational setting. We study SSIs in infinite dimensional polynomial rings, where the duality is most natural. Finally a new type of resolution for SSIs is introduced. This is the projective resolution in the category of shift modules.","PeriodicalId":377306,"journal":{"name":"Transactions of the American Mathematical Society, Series B","volume":"28 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"115016246","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Characterizations of monadic NIP 一元NIP的特征
Transactions of the American Mathematical Society, Series B Pub Date : 2021-04-27 DOI: 10.1090/btran/94
S. Braunfeld, M. Laskowski
{"title":"Characterizations of monadic NIP","authors":"S. Braunfeld, M. Laskowski","doi":"10.1090/btran/94","DOIUrl":"https://doi.org/10.1090/btran/94","url":null,"abstract":"We give several characterizations of when a complete first-order theory \u0000\u0000 \u0000 T\u0000 T\u0000 \u0000\u0000 is monadically NIP, i.e. when expansions of \u0000\u0000 \u0000 T\u0000 T\u0000 \u0000\u0000 by arbitrary unary predicates do not have the independence property. The central characterization is a condition on finite satisfiability of types. Other characterizations include decompositions of models, the behavior of indiscernibles, and a forbidden configuration. As an application, we prove non-structure results for hereditary classes of finite substructures of non-monadically NIP models that eliminate quantifiers.","PeriodicalId":377306,"journal":{"name":"Transactions of the American Mathematical Society, Series B","volume":"12 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"125554880","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 15
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信