结协中的临界点计数:阿贝尔和亚循环不变量

C. Livingston
{"title":"结协中的临界点计数:阿贝尔和亚循环不变量","authors":"C. Livingston","doi":"10.1090/btran/139","DOIUrl":null,"url":null,"abstract":"<p>For a pair of knots <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper K 1\">\n <mml:semantics>\n <mml:msub>\n <mml:mi>K</mml:mi>\n <mml:mn>1</mml:mn>\n </mml:msub>\n <mml:annotation encoding=\"application/x-tex\">K_1</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> and <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper K 0\">\n <mml:semantics>\n <mml:msub>\n <mml:mi>K</mml:mi>\n <mml:mn>0</mml:mn>\n </mml:msub>\n <mml:annotation encoding=\"application/x-tex\">K_0</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>, we consider the set of four-tuples of integers <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"left-parenthesis g comma c 0 comma c 1 comma c 2 right-parenthesis\">\n <mml:semantics>\n <mml:mrow>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>g</mml:mi>\n <mml:mo>,</mml:mo>\n <mml:msub>\n <mml:mi>c</mml:mi>\n <mml:mn>0</mml:mn>\n </mml:msub>\n <mml:mo>,</mml:mo>\n <mml:msub>\n <mml:mi>c</mml:mi>\n <mml:mn>1</mml:mn>\n </mml:msub>\n <mml:mo>,</mml:mo>\n <mml:msub>\n <mml:mi>c</mml:mi>\n <mml:mn>2</mml:mn>\n </mml:msub>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">(g, c_0,c_1, c_2)</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> for which there is a cobordism from <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper K 1\">\n <mml:semantics>\n <mml:msub>\n <mml:mi>K</mml:mi>\n <mml:mn>1</mml:mn>\n </mml:msub>\n <mml:annotation encoding=\"application/x-tex\">K_1</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> to <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper K 0\">\n <mml:semantics>\n <mml:msub>\n <mml:mi>K</mml:mi>\n <mml:mn>0</mml:mn>\n </mml:msub>\n <mml:annotation encoding=\"application/x-tex\">K_0</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> of genus <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"g\">\n <mml:semantics>\n <mml:mi>g</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">g</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> having <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"c Subscript i\">\n <mml:semantics>\n <mml:msub>\n <mml:mi>c</mml:mi>\n <mml:mi>i</mml:mi>\n </mml:msub>\n <mml:annotation encoding=\"application/x-tex\">c_i</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> critical points of each index <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"i\">\n <mml:semantics>\n <mml:mi>i</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">i</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>. We describe basic properties that such sets must satisfy and then build homological obstructions to membership in the set. These obstructions are determined by knot invariants arising from cyclic and metacyclic covering spaces.</p>","PeriodicalId":377306,"journal":{"name":"Transactions of the American Mathematical Society, Series B","volume":"37 36","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Critical point counts in knot cobordisms: abelian and metacyclic invariants\",\"authors\":\"C. Livingston\",\"doi\":\"10.1090/btran/139\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>For a pair of knots <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper K 1\\\">\\n <mml:semantics>\\n <mml:msub>\\n <mml:mi>K</mml:mi>\\n <mml:mn>1</mml:mn>\\n </mml:msub>\\n <mml:annotation encoding=\\\"application/x-tex\\\">K_1</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> and <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper K 0\\\">\\n <mml:semantics>\\n <mml:msub>\\n <mml:mi>K</mml:mi>\\n <mml:mn>0</mml:mn>\\n </mml:msub>\\n <mml:annotation encoding=\\\"application/x-tex\\\">K_0</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>, we consider the set of four-tuples of integers <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"left-parenthesis g comma c 0 comma c 1 comma c 2 right-parenthesis\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:mo stretchy=\\\"false\\\">(</mml:mo>\\n <mml:mi>g</mml:mi>\\n <mml:mo>,</mml:mo>\\n <mml:msub>\\n <mml:mi>c</mml:mi>\\n <mml:mn>0</mml:mn>\\n </mml:msub>\\n <mml:mo>,</mml:mo>\\n <mml:msub>\\n <mml:mi>c</mml:mi>\\n <mml:mn>1</mml:mn>\\n </mml:msub>\\n <mml:mo>,</mml:mo>\\n <mml:msub>\\n <mml:mi>c</mml:mi>\\n <mml:mn>2</mml:mn>\\n </mml:msub>\\n <mml:mo stretchy=\\\"false\\\">)</mml:mo>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">(g, c_0,c_1, c_2)</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> for which there is a cobordism from <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper K 1\\\">\\n <mml:semantics>\\n <mml:msub>\\n <mml:mi>K</mml:mi>\\n <mml:mn>1</mml:mn>\\n </mml:msub>\\n <mml:annotation encoding=\\\"application/x-tex\\\">K_1</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> to <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper K 0\\\">\\n <mml:semantics>\\n <mml:msub>\\n <mml:mi>K</mml:mi>\\n <mml:mn>0</mml:mn>\\n </mml:msub>\\n <mml:annotation encoding=\\\"application/x-tex\\\">K_0</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> of genus <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"g\\\">\\n <mml:semantics>\\n <mml:mi>g</mml:mi>\\n <mml:annotation encoding=\\\"application/x-tex\\\">g</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> having <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"c Subscript i\\\">\\n <mml:semantics>\\n <mml:msub>\\n <mml:mi>c</mml:mi>\\n <mml:mi>i</mml:mi>\\n </mml:msub>\\n <mml:annotation encoding=\\\"application/x-tex\\\">c_i</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> critical points of each index <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"i\\\">\\n <mml:semantics>\\n <mml:mi>i</mml:mi>\\n <mml:annotation encoding=\\\"application/x-tex\\\">i</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>. We describe basic properties that such sets must satisfy and then build homological obstructions to membership in the set. These obstructions are determined by knot invariants arising from cyclic and metacyclic covering spaces.</p>\",\"PeriodicalId\":377306,\"journal\":{\"name\":\"Transactions of the American Mathematical Society, Series B\",\"volume\":\"37 36\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transactions of the American Mathematical Society, Series B\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1090/btran/139\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions of the American Mathematical Society, Series B","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/btran/139","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

对于一对结点k1k_1和k0k_0,我们考虑整数(g, c0, c1, c2) (g, c_0,c_1,c_2)它有一个从k1k_1到k0k_0的g g格的协配,每个指标i i都有c_i个临界点。我们描述了这样的集合必须满足的基本性质,然后建立了对集合成员的同调障碍。这些障碍是由由循环和亚循环覆盖空间产生的结不变量决定的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Critical point counts in knot cobordisms: abelian and metacyclic invariants

For a pair of knots K 1 K_1 and K 0 K_0 , we consider the set of four-tuples of integers ( g , c 0 , c 1 , c 2 ) (g, c_0,c_1, c_2) for which there is a cobordism from K 1 K_1 to K 0 K_0 of genus g g having c i c_i critical points of each index i i . We describe basic properties that such sets must satisfy and then build homological obstructions to membership in the set. These obstructions are determined by knot invariants arising from cyclic and metacyclic covering spaces.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.70
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信