具有双指数渐近的一般型的变种

L. Esser, B. Totaro, Chengxi Wang
{"title":"具有双指数渐近的一般型的变种","authors":"L. Esser, B. Totaro, Chengxi Wang","doi":"10.1090/btran/125","DOIUrl":null,"url":null,"abstract":"We construct smooth projective varieties of general type with the smallest known volume and others with the most known vanishing plurigenera in high dimensions. The optimal volume bound is expected to decay doubly exponentially with dimension, and our examples achieve this decay rate. We also consider the analogous questions for other types of varieties. For example, in every dimension we conjecture the terminal Fano variety of minimal volume, and the canonical Calabi-Yau variety of minimal volume. In each case, our examples exhibit doubly exponential behavior.","PeriodicalId":377306,"journal":{"name":"Transactions of the American Mathematical Society, Series B","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":"{\"title\":\"Varieties of general type with doubly exponential asymptotics\",\"authors\":\"L. Esser, B. Totaro, Chengxi Wang\",\"doi\":\"10.1090/btran/125\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We construct smooth projective varieties of general type with the smallest known volume and others with the most known vanishing plurigenera in high dimensions. The optimal volume bound is expected to decay doubly exponentially with dimension, and our examples achieve this decay rate. We also consider the analogous questions for other types of varieties. For example, in every dimension we conjecture the terminal Fano variety of minimal volume, and the canonical Calabi-Yau variety of minimal volume. In each case, our examples exhibit doubly exponential behavior.\",\"PeriodicalId\":377306,\"journal\":{\"name\":\"Transactions of the American Mathematical Society, Series B\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-09-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"18\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transactions of the American Mathematical Society, Series B\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1090/btran/125\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions of the American Mathematical Society, Series B","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/btran/125","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18

摘要

我们在高维空间构造了已知体积最小的一般型光滑射影变种和已知消失多属最常见的一般型光滑射影变种。期望最优体积边界随着维度的增加呈指数倍衰减,我们的例子达到了这种衰减率。我们也考虑其他种类的类似问题。例如,在每个维度上,我们推测最小体积的终端Fano变化和典型的Calabi-Yau变化。在每种情况下,我们的例子都表现出双指数行为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Varieties of general type with doubly exponential asymptotics
We construct smooth projective varieties of general type with the smallest known volume and others with the most known vanishing plurigenera in high dimensions. The optimal volume bound is expected to decay doubly exponentially with dimension, and our examples achieve this decay rate. We also consider the analogous questions for other types of varieties. For example, in every dimension we conjecture the terminal Fano variety of minimal volume, and the canonical Calabi-Yau variety of minimal volume. In each case, our examples exhibit doubly exponential behavior.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.70
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信