Volume bound for the canonical lift complement of a random geodesic

Tommaso Cremaschi, Yannick Krifka, D'idac Mart'inez-Granado, Franco Vargas Pallete
{"title":"Volume bound for the canonical lift complement of a random geodesic","authors":"Tommaso Cremaschi, Yannick Krifka, D'idac Mart'inez-Granado, Franco Vargas Pallete","doi":"10.1090/btran/152","DOIUrl":null,"url":null,"abstract":"Given a filling primitive geodesic curve in a closed hyperbolic surface one obtains a hyperbolic three-manifold as the complement of the curve's canonical lift to the projective tangent bundle. In this paper we give the first known lower bound for the volume of these manifolds in terms of the length of generic curves. We show that estimating the volume from below can be reduced to a counting problem in the unit tangent bundle and solve it by applying an exponential multiple mixing result for the geodesic flow.","PeriodicalId":377306,"journal":{"name":"Transactions of the American Mathematical Society, Series B","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions of the American Mathematical Society, Series B","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/btran/152","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Given a filling primitive geodesic curve in a closed hyperbolic surface one obtains a hyperbolic three-manifold as the complement of the curve's canonical lift to the projective tangent bundle. In this paper we give the first known lower bound for the volume of these manifolds in terms of the length of generic curves. We show that estimating the volume from below can be reduced to a counting problem in the unit tangent bundle and solve it by applying an exponential multiple mixing result for the geodesic flow.
随机测地线的正则升力补的体积界
给定一个封闭双曲曲面上的填充原始测地线曲线,得到一个双曲三流形,作为曲线对射影切束正则升的补。本文用一般曲线的长度给出了这些流形体积的第一个已知下界。我们证明了从下面估计体积可以简化为单位切线束的计数问题,并通过对测地线流应用指数多重混合结果来解决它。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.70
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信