On Floer minimal knots in sutured manifolds

Zhenkun Li, Yi Xie, Boyu Zhang
{"title":"On Floer minimal knots in sutured manifolds","authors":"Zhenkun Li, Yi Xie, Boyu Zhang","doi":"10.1090/btran/105","DOIUrl":null,"url":null,"abstract":"<p>Suppose <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"left-parenthesis upper M comma gamma right-parenthesis\">\n <mml:semantics>\n <mml:mrow>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>M</mml:mi>\n <mml:mo>,</mml:mo>\n <mml:mi>γ<!-- γ --></mml:mi>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">(M, \\gamma )</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> is a balanced sutured manifold and <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper K\">\n <mml:semantics>\n <mml:mi>K</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">K</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> is a rationally null-homologous knot in <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper M\">\n <mml:semantics>\n <mml:mi>M</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">M</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>. It is known that the rank of the sutured Floer homology of <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper M minus upper N left-parenthesis upper K right-parenthesis\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>M</mml:mi>\n <mml:mi class=\"MJX-variant\" mathvariant=\"normal\">∖<!-- ∖ --></mml:mi>\n <mml:mi>N</mml:mi>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>K</mml:mi>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">M\\backslash N(K)</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> is at least twice the rank of the sutured Floer homology of <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper M\">\n <mml:semantics>\n <mml:mi>M</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">M</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>. This paper studies the properties of <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper K\">\n <mml:semantics>\n <mml:mi>K</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">K</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> when the equality is achieved for instanton homology. As an application, we show that if <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper L subset-of upper S cubed\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>L</mml:mi>\n <mml:mo>⊂<!-- ⊂ --></mml:mo>\n <mml:msup>\n <mml:mi>S</mml:mi>\n <mml:mn>3</mml:mn>\n </mml:msup>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">L\\subset S^3</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> is a fixed link and <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper K\">\n <mml:semantics>\n <mml:mi>K</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">K</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> is a knot in the complement of <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper L\">\n <mml:semantics>\n <mml:mi>L</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">L</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>, then the instanton link Floer homology of <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper L union upper K\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>L</mml:mi>\n <mml:mo>∪<!-- ∪ --></mml:mo>\n <mml:mi>K</mml:mi>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">L\\cup K</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> achieves the minimum rank if and only if <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper K\">\n <mml:semantics>\n <mml:mi>K</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">K</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> is the unknot in <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper S cubed minus upper L\">\n <mml:semantics>\n <mml:mrow>\n <mml:msup>\n <mml:mi>S</mml:mi>\n <mml:mn>3</mml:mn>\n </mml:msup>\n <mml:mi class=\"MJX-variant\" mathvariant=\"normal\">∖<!-- ∖ --></mml:mi>\n <mml:mi>L</mml:mi>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">S^3\\backslash L</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>.</p>","PeriodicalId":377306,"journal":{"name":"Transactions of the American Mathematical Society, Series B","volume":"79 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions of the American Mathematical Society, Series B","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/btran/105","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Suppose ( M , γ ) (M, \gamma ) is a balanced sutured manifold and K K is a rationally null-homologous knot in M M . It is known that the rank of the sutured Floer homology of M N ( K ) M\backslash N(K) is at least twice the rank of the sutured Floer homology of M M . This paper studies the properties of K K when the equality is achieved for instanton homology. As an application, we show that if L S 3 L\subset S^3 is a fixed link and K K is a knot in the complement of L L , then the instanton link Floer homology of L K L\cup K achieves the minimum rank if and only if K K is the unknot in S 3 L S^3\backslash L .

在花上最小的结在缝合的流形
假设(M, γ) (M, \gamma)是一个平衡的缝合流形,K K是M M中的一个合理的零同源结。已知M∈N(K) M \backslash N(K)的缝合花同调的秩至少是M的缝合花同调的秩的两倍。本文研究了K K在满足实例同调的等式时的性质。作为一个应用,我们证明了如果L∧S 3 L \subset S^3是一个固定的链路,K K是L L补上的一个结,那么L∪K L \cup K的瞬时链路花同调达到最小秩当且仅当K K是S 3∈L S^3 \backslash L中的解结。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.70
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信