一元NIP的特征

S. Braunfeld, M. Laskowski
{"title":"一元NIP的特征","authors":"S. Braunfeld, M. Laskowski","doi":"10.1090/btran/94","DOIUrl":null,"url":null,"abstract":"We give several characterizations of when a complete first-order theory \n\n \n T\n T\n \n\n is monadically NIP, i.e. when expansions of \n\n \n T\n T\n \n\n by arbitrary unary predicates do not have the independence property. The central characterization is a condition on finite satisfiability of types. Other characterizations include decompositions of models, the behavior of indiscernibles, and a forbidden configuration. As an application, we prove non-structure results for hereditary classes of finite substructures of non-monadically NIP models that eliminate quantifiers.","PeriodicalId":377306,"journal":{"name":"Transactions of the American Mathematical Society, Series B","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"Characterizations of monadic NIP\",\"authors\":\"S. Braunfeld, M. Laskowski\",\"doi\":\"10.1090/btran/94\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We give several characterizations of when a complete first-order theory \\n\\n \\n T\\n T\\n \\n\\n is monadically NIP, i.e. when expansions of \\n\\n \\n T\\n T\\n \\n\\n by arbitrary unary predicates do not have the independence property. The central characterization is a condition on finite satisfiability of types. Other characterizations include decompositions of models, the behavior of indiscernibles, and a forbidden configuration. As an application, we prove non-structure results for hereditary classes of finite substructures of non-monadically NIP models that eliminate quantifiers.\",\"PeriodicalId\":377306,\"journal\":{\"name\":\"Transactions of the American Mathematical Society, Series B\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-04-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transactions of the American Mathematical Society, Series B\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1090/btran/94\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions of the American Mathematical Society, Series B","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/btran/94","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

摘要

给出了完全一阶理论T T是一元NIP的几个特征,即T T由任意一元谓词展开时不具有独立性。中心表征是类型有限可满足的一个条件。其他特征包括模型的分解、不可分辨的行为和禁止的配置。作为应用,我们证明了消除量词的非一元NIP模型有限子结构的遗传类的非结构结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Characterizations of monadic NIP
We give several characterizations of when a complete first-order theory T T is monadically NIP, i.e. when expansions of T T by arbitrary unary predicates do not have the independence property. The central characterization is a condition on finite satisfiability of types. Other characterizations include decompositions of models, the behavior of indiscernibles, and a forbidden configuration. As an application, we prove non-structure results for hereditary classes of finite substructures of non-monadically NIP models that eliminate quantifiers.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.70
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信