Transactions of the American Mathematical Society, Series B最新文献

筛选
英文 中文
Carter subgroups, characters and composition series 卡特子组、人物和构图系列
Transactions of the American Mathematical Society, Series B Pub Date : 2022-05-27 DOI: 10.1090/btran/93
I. Isaacs
{"title":"Carter subgroups, characters and composition series","authors":"I. Isaacs","doi":"10.1090/btran/93","DOIUrl":"https://doi.org/10.1090/btran/93","url":null,"abstract":"<p>Let <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper G\">\u0000 <mml:semantics>\u0000 <mml:mi>G</mml:mi>\u0000 <mml:annotation encoding=\"application/x-tex\">G</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula> be a finite solvable group. We construct a set <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"script upper H\">\u0000 <mml:semantics>\u0000 <mml:mrow class=\"MJX-TeXAtom-ORD\">\u0000 <mml:mi class=\"MJX-tex-caligraphic\" mathvariant=\"script\">H</mml:mi>\u0000 </mml:mrow>\u0000 <mml:annotation encoding=\"application/x-tex\">mathcal {H}</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula> of irreducible characters of <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper G\">\u0000 <mml:semantics>\u0000 <mml:mi>G</mml:mi>\u0000 <mml:annotation encoding=\"application/x-tex\">G</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula> such that if <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper C\">\u0000 <mml:semantics>\u0000 <mml:mi>C</mml:mi>\u0000 <mml:annotation encoding=\"application/x-tex\">C</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula> is a Carter subgroup of <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper G\">\u0000 <mml:semantics>\u0000 <mml:mi>G</mml:mi>\u0000 <mml:annotation encoding=\"application/x-tex\">G</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula>, then the members of <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"script upper H\">\u0000 <mml:semantics>\u0000 <mml:mrow class=\"MJX-TeXAtom-ORD\">\u0000 <mml:mi class=\"MJX-tex-caligraphic\" mathvariant=\"script\">H</mml:mi>\u0000 </mml:mrow>\u0000 <mml:annotation encoding=\"application/x-tex\">mathcal {H}</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula> behave well with respect to <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper C\">\u0000 <mml:semantics>\u0000 <mml:mi>C</mml:mi>\u0000 <mml:annotation encoding=\"application/x-tex\">C</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula>-composition series for <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper G\">\u0000 <mml:semantics>\u0000 <mml:mi>G</mml:mi>\u0000 <mml:annotation encoding=\"application/x-tex\">G</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula>, and we show that <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"script upper H\">\u0000 <mml:semantics>\u0000 <mml:mrow class=\"MJX-TeXAtom-ORD\">\u0000 <mml:mi class=\"MJX-tex-caligraphic\" mathvariant=\"script\">H</mml:mi>\u0000 </mml:mrow>\u0000 <mml:annotation encoding=\"application/x-te","PeriodicalId":377306,"journal":{"name":"Transactions of the American Mathematical Society, Series B","volume":"31 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"123368923","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Correction to “A finite basis theorem for difference-term varieties with a finite residual bound” 对“残差界有限的差分项的有限基定理”的修正
Transactions of the American Mathematical Society, Series B Pub Date : 2022-05-17 DOI: 10.1090/btran/120
K. Kearnes, Á. Szendrei, R. Willard
{"title":"Correction to “A finite basis theorem for difference-term varieties with a finite residual bound”","authors":"K. Kearnes, Á. Szendrei, R. Willard","doi":"10.1090/btran/120","DOIUrl":"https://doi.org/10.1090/btran/120","url":null,"abstract":"There is a gap in our proof [Trans. Amer. Math. Soc. 368 (2016), pp. 2115–2143, Lemma 6.2]. We direct readers to a paper that fills the gap.","PeriodicalId":377306,"journal":{"name":"Transactions of the American Mathematical Society, Series B","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"129411102","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Pseudo-Anosov subgroups of general fibered 3–manifold groups 一般纤维3流形群的伪anosov子群
Transactions of the American Mathematical Society, Series B Pub Date : 2022-04-08 DOI: 10.1090/btran/157
C. Leininger, Jacob Russell
{"title":"Pseudo-Anosov subgroups of general fibered 3–manifold groups","authors":"C. Leininger, Jacob Russell","doi":"10.1090/btran/157","DOIUrl":"https://doi.org/10.1090/btran/157","url":null,"abstract":"We show that finitely generated and purely pseudo-Anosov subgroups of fundamental groups of fibered 3–manifolds with reducible monodromy are convex cocompact as subgroups of the mapping class group via the Birman exact sequence. Combined with results of Dowdall–Kent–Leininger and Kent–Leininger–Schleimer, this establishes the result for the image of all such fibered 3–manifold groups in the mapping class group.","PeriodicalId":377306,"journal":{"name":"Transactions of the American Mathematical Society, Series B","volume":"2012 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"125650316","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Riesz and Green energy on projective spaces Riesz和绿色能源在投影空间
Transactions of the American Mathematical Society, Series B Pub Date : 2022-04-08 DOI: 10.1090/btran/161
A. Anderson, M. Dostert, P. Grabner, Ryan Matzke, T. Stepaniuk
{"title":"Riesz and Green energy on projective spaces","authors":"A. Anderson, M. Dostert, P. Grabner, Ryan Matzke, T. Stepaniuk","doi":"10.1090/btran/161","DOIUrl":"https://doi.org/10.1090/btran/161","url":null,"abstract":"In this paper we study Riesz, Green and logarithmic energy on two-point homogeneous spaces. More precisely we consider the real, the complex, the quaternionic and the Cayley projective spaces. For each of these spaces we provide upper estimates for the mentioned energies using determinantal point processes. Moreover, we determine lower bounds for these energies of the same order of magnitude.","PeriodicalId":377306,"journal":{"name":"Transactions of the American Mathematical Society, Series B","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"127336873","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
Weak hypergraph regularity and applications to geometric Ramsey theory 弱超图正则性及其在几何Ramsey理论中的应用
Transactions of the American Mathematical Society, Series B Pub Date : 2022-03-17 DOI: 10.1090/btran/61
N. Lyall, Á. Magyar
{"title":"Weak hypergraph regularity and applications to geometric Ramsey theory","authors":"N. Lyall, Á. Magyar","doi":"10.1090/btran/61","DOIUrl":"https://doi.org/10.1090/btran/61","url":null,"abstract":"<p>Let <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"normal upper Delta equals normal upper Delta 1 times ellipsis times normal upper Delta Subscript d Baseline subset-of-or-equal-to double-struck upper R Superscript n\">\u0000 <mml:semantics>\u0000 <mml:mrow>\u0000 <mml:mi mathvariant=\"normal\">Δ<!-- Δ --></mml:mi>\u0000 <mml:mo>=</mml:mo>\u0000 <mml:msub>\u0000 <mml:mi mathvariant=\"normal\">Δ<!-- Δ --></mml:mi>\u0000 <mml:mn>1</mml:mn>\u0000 </mml:msub>\u0000 <mml:mo>×<!-- × --></mml:mo>\u0000 <mml:mo>…<!-- … --></mml:mo>\u0000 <mml:mo>×<!-- × --></mml:mo>\u0000 <mml:msub>\u0000 <mml:mi mathvariant=\"normal\">Δ<!-- Δ --></mml:mi>\u0000 <mml:mi>d</mml:mi>\u0000 </mml:msub>\u0000 <mml:mo>⊆<!-- ⊆ --></mml:mo>\u0000 <mml:msup>\u0000 <mml:mrow class=\"MJX-TeXAtom-ORD\">\u0000 <mml:mi mathvariant=\"double-struck\">R</mml:mi>\u0000 </mml:mrow>\u0000 <mml:mi>n</mml:mi>\u0000 </mml:msup>\u0000 </mml:mrow>\u0000 <mml:annotation encoding=\"application/x-tex\">Delta =Delta _1times ldots times Delta _dsubseteq mathbb {R}^n</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula>, where <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"double-struck upper R Superscript n Baseline equals double-struck upper R Superscript n 1 Baseline times midline-horizontal-ellipsis times double-struck upper R Superscript n Super Subscript d\">\u0000 <mml:semantics>\u0000 <mml:mrow>\u0000 <mml:msup>\u0000 <mml:mrow class=\"MJX-TeXAtom-ORD\">\u0000 <mml:mi mathvariant=\"double-struck\">R</mml:mi>\u0000 </mml:mrow>\u0000 <mml:mi>n</mml:mi>\u0000 </mml:msup>\u0000 <mml:mo>=</mml:mo>\u0000 <mml:msup>\u0000 <mml:mrow class=\"MJX-TeXAtom-ORD\">\u0000 <mml:mi mathvariant=\"double-struck\">R</mml:mi>\u0000 </mml:mrow>\u0000 <mml:mrow class=\"MJX-TeXAtom-ORD\">\u0000 <mml:msub>\u0000 <mml:mi>n</mml:mi>\u0000 <mml:mn>1</mml:mn>\u0000 </mml:msub>\u0000 </mml:mrow>\u0000 </mml:msup>\u0000 <mml:mo>×<!-- × --></mml:mo>\u0000 <mml:mo>⋯<!-- ⋯ --></mml:mo>\u0000 <mml:mo>×<!-- × --></mml:mo>\u0000 <mml:msup>\u0000 <mml:mrow class=\"MJX-TeXAtom-ORD\">\u0000 <mml:mi mathvariant=\"double-struck\">R</mml:mi>\u0000 </mml:mrow>\u0000 <mml:mrow class=\"MJX-TeXAtom-ORD\">\u0000 <mml:msub>\u0000 <mml:mi>n</mml:mi>\u0000 <mml:mi>d</mml:mi>\u0000 </mml:msub>\u0000 </mml:mrow>\u0000 </mml:msup>\u0000 </mml:mrow>\u0000 <mml:annotation encoding=\"application/x-tex\">mathbb {R}^n=mathbb {R}^{n_1}times cdots times mathbb {R}^{n_d}</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula> with each <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"normal upper Delta Subscript i Baseline subset-of-or-equal-to double-struck upper R Superscript n Super Subscript i\">\u0000 <mml:semantics>\u0000 <mml:mrow>\u0000 <mml:msub>\u0000 <mml:mi mathvariant=\"normal\">Δ<!-- Δ --></mml:mi>\u0000 ","PeriodicalId":377306,"journal":{"name":"Transactions of the American Mathematical Society, Series B","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"115576305","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 15
The Legendre-Hardy inequality on bounded domains 有界域上的legende - hardy不等式
Transactions of the American Mathematical Society, Series B Pub Date : 2022-03-17 DOI: 10.1090/btran/75
Jaeyoung Byeon, Sangdon Jin
{"title":"The Legendre-Hardy inequality on bounded domains","authors":"Jaeyoung Byeon, Sangdon Jin","doi":"10.1090/btran/75","DOIUrl":"https://doi.org/10.1090/btran/75","url":null,"abstract":"<p>There have been numerous studies on Hardy’s inequality on a bounded domain, which holds for functions vanishing on the boundary. On the other hand, the classical Legendre differential equation defined in an interval can be regarded as a Neumann version of the Hardy inequality with subcritical weight functions. In this paper we study a Neumann version of the Hardy inequality on a bounded <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper C squared\">\u0000 <mml:semantics>\u0000 <mml:msup>\u0000 <mml:mi>C</mml:mi>\u0000 <mml:mn>2</mml:mn>\u0000 </mml:msup>\u0000 <mml:annotation encoding=\"application/x-tex\">C^2</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula>-domain in <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"double-struck upper R Superscript n\">\u0000 <mml:semantics>\u0000 <mml:msup>\u0000 <mml:mrow class=\"MJX-TeXAtom-ORD\">\u0000 <mml:mi mathvariant=\"double-struck\">R</mml:mi>\u0000 </mml:mrow>\u0000 <mml:mi>n</mml:mi>\u0000 </mml:msup>\u0000 <mml:annotation encoding=\"application/x-tex\">mathbb {R}^n</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula> of the following form <disp-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"integral Underscript normal upper Omega Endscripts d Superscript beta Baseline left-parenthesis x right-parenthesis StartAbsoluteValue nabla u left-parenthesis x right-parenthesis EndAbsoluteValue squared d x greater-than-or-equal-to upper C left-parenthesis alpha comma beta right-parenthesis integral Underscript normal upper Omega Endscripts StartFraction StartAbsoluteValue u left-parenthesis x right-parenthesis EndAbsoluteValue squared Over d Superscript alpha Baseline left-parenthesis x right-parenthesis EndFraction d x with integral Underscript normal upper Omega Endscripts StartFraction u left-parenthesis x right-parenthesis Over d Superscript alpha Baseline left-parenthesis x right-parenthesis EndFraction d x equals 0 comma\">\u0000 <mml:semantics>\u0000 <mml:mrow>\u0000 <mml:msub>\u0000 <mml:mo>∫<!-- ∫ --></mml:mo>\u0000 <mml:mi mathvariant=\"normal\">Ω<!-- Ω --></mml:mi>\u0000 </mml:msub>\u0000 <mml:msup>\u0000 <mml:mi>d</mml:mi>\u0000 <mml:mrow class=\"MJX-TeXAtom-ORD\">\u0000 <mml:mi>β<!-- β --></mml:mi>\u0000 </mml:mrow>\u0000 </mml:msup>\u0000 <mml:mo stretchy=\"false\">(</mml:mo>\u0000 <mml:mi>x</mml:mi>\u0000 <mml:mo stretchy=\"false\">)</mml:mo>\u0000 <mml:mrow class=\"MJX-TeXAtom-ORD\">\u0000 <mml:mo stretchy=\"false\">|</mml:mo>\u0000 </mml:mrow>\u0000 <mml:mi mathvariant=\"normal\">∇<!-- ∇ --></mml:mi>\u0000 <mml:mi>u</mml:mi>\u0000 <mml:mo stretchy=\"false\">(</mml:mo>\u0000 <mml:mi>x</mml:mi>\u0000 <mml:mo stretchy=\"false\">)</mml:mo>\u0000 <mml:msup>\u0000 <mml:mrow class=\"MJX-TeXAtom-ORD\">\u0000 <mml:mo stretchy=\"false\">|</mml:mo>\u0000 </mml:mrow>\u0000 <mml:mn>2</mml:mn>\u0000 </mml:msup>\u0000 <mml:mi>","PeriodicalId":377306,"journal":{"name":"Transactions of the American Mathematical Society, Series B","volume":" 8","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"120933679","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Rank growth of elliptic curves over 𝑁-th root extensions 𝑁-th根扩展上椭圆曲线的秩生长
Transactions of the American Mathematical Society, Series B Pub Date : 2021-12-23 DOI: 10.1090/btran/149
A. Shnidman, Ariel Weiss
{"title":"Rank growth of elliptic curves over 𝑁-th root extensions","authors":"A. Shnidman, Ariel Weiss","doi":"10.1090/btran/149","DOIUrl":"https://doi.org/10.1090/btran/149","url":null,"abstract":"<p>Fix an elliptic curve <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper E\">\u0000 <mml:semantics>\u0000 <mml:mi>E</mml:mi>\u0000 <mml:annotation encoding=\"application/x-tex\">E</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula> over a number field <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper F\">\u0000 <mml:semantics>\u0000 <mml:mi>F</mml:mi>\u0000 <mml:annotation encoding=\"application/x-tex\">F</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula> and an integer <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"n\">\u0000 <mml:semantics>\u0000 <mml:mi>n</mml:mi>\u0000 <mml:annotation encoding=\"application/x-tex\">n</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula> which is a power of <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"3\">\u0000 <mml:semantics>\u0000 <mml:mn>3</mml:mn>\u0000 <mml:annotation encoding=\"application/x-tex\">3</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula>. We study the growth of the Mordell–Weil rank of <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper E\">\u0000 <mml:semantics>\u0000 <mml:mi>E</mml:mi>\u0000 <mml:annotation encoding=\"application/x-tex\">E</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula> after base change to the fields <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper K Subscript d Baseline equals upper F left-parenthesis RootIndex 2 n StartRoot d EndRoot right-parenthesis\">\u0000 <mml:semantics>\u0000 <mml:mrow>\u0000 <mml:msub>\u0000 <mml:mi>K</mml:mi>\u0000 <mml:mi>d</mml:mi>\u0000 </mml:msub>\u0000 <mml:mo>=</mml:mo>\u0000 <mml:mi>F</mml:mi>\u0000 <mml:mo stretchy=\"false\">(</mml:mo>\u0000 <mml:mspace width=\"negativethinmathspace\" />\u0000 <mml:mroot>\u0000 <mml:mi>d</mml:mi>\u0000 <mml:mrow>\u0000 <mml:mn>2</mml:mn>\u0000 <mml:mi>n</mml:mi>\u0000 </mml:mrow>\u0000 </mml:mroot>\u0000 <mml:mo stretchy=\"false\">)</mml:mo>\u0000 </mml:mrow>\u0000 <mml:annotation encoding=\"application/x-tex\">K_d = F(!sqrt [2n]{d})</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula>. If <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper E\">\u0000 <mml:semantics>\u0000 <mml:mi>E</mml:mi>\u0000 <mml:annotation encoding=\"application/x-tex\">E</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula> admits a <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"3\">\u0000 <mml:semantics>\u0000 <mml:mn>3</mml:mn>\u0000 <mml:annotation encoding=\"application/x-tex\">3</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula>-isogeny, then we show that the average “new rank” o","PeriodicalId":377306,"journal":{"name":"Transactions of the American Mathematical Society, Series B","volume":"13 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"114567156","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Congruences like Atkin’s for the partition function 像配分函数的阿特金同余
Transactions of the American Mathematical Society, Series B Pub Date : 2021-12-17 DOI: 10.1090/btran/128
S. Ahlgren, P. Allen, S. Tang
{"title":"Congruences like Atkin’s for the partition function","authors":"S. Ahlgren, P. Allen, S. Tang","doi":"10.1090/btran/128","DOIUrl":"https://doi.org/10.1090/btran/128","url":null,"abstract":"<p>Let <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"p left-parenthesis n right-parenthesis\">\u0000 <mml:semantics>\u0000 <mml:mrow>\u0000 <mml:mi>p</mml:mi>\u0000 <mml:mo stretchy=\"false\">(</mml:mo>\u0000 <mml:mi>n</mml:mi>\u0000 <mml:mo stretchy=\"false\">)</mml:mo>\u0000 </mml:mrow>\u0000 <mml:annotation encoding=\"application/x-tex\">p(n)</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula> be the ordinary partition function. In the 1960s Atkin found a number of examples of congruences of the form <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"p left-parenthesis upper Q cubed script l n plus beta right-parenthesis identical-to 0 left-parenthesis mod script l right-parenthesis\">\u0000 <mml:semantics>\u0000 <mml:mrow>\u0000 <mml:mi>p</mml:mi>\u0000 <mml:mo stretchy=\"false\">(</mml:mo>\u0000 <mml:msup>\u0000 <mml:mi>Q</mml:mi>\u0000 <mml:mn>3</mml:mn>\u0000 </mml:msup>\u0000 <mml:mi>ℓ<!-- ℓ --></mml:mi>\u0000 <mml:mi>n</mml:mi>\u0000 <mml:mo>+</mml:mo>\u0000 <mml:mi>β<!-- β --></mml:mi>\u0000 <mml:mo stretchy=\"false\">)</mml:mo>\u0000 <mml:mo>≡<!-- ≡ --></mml:mo>\u0000 <mml:mn>0</mml:mn>\u0000 <mml:mspace width=\"0.667em\" />\u0000 <mml:mo stretchy=\"false\">(</mml:mo>\u0000 <mml:mi>mod</mml:mi>\u0000 <mml:mspace width=\"0.333em\" />\u0000 <mml:mi>ℓ<!-- ℓ --></mml:mi>\u0000 <mml:mo stretchy=\"false\">)</mml:mo>\u0000 </mml:mrow>\u0000 <mml:annotation encoding=\"application/x-tex\">p( Q^3 ell n+beta )equiv 0pmod ell</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula> where <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"script l\">\u0000 <mml:semantics>\u0000 <mml:mi>ℓ<!-- ℓ --></mml:mi>\u0000 <mml:annotation encoding=\"application/x-tex\">ell</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula> and <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper Q\">\u0000 <mml:semantics>\u0000 <mml:mi>Q</mml:mi>\u0000 <mml:annotation encoding=\"application/x-tex\">Q</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula> are prime and <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"5 less-than-or-equal-to script l less-than-or-equal-to 31\">\u0000 <mml:semantics>\u0000 <mml:mrow>\u0000 <mml:mn>5</mml:mn>\u0000 <mml:mo>≤<!-- ≤ --></mml:mo>\u0000 <mml:mi>ℓ<!-- ℓ --></mml:mi>\u0000 <mml:mo>≤<!-- ≤ --></mml:mo>\u0000 <mml:mn>31</mml:mn>\u0000 </mml:mrow>\u0000 <mml:annotation encoding=\"application/x-tex\">5leq ell leq 31</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula>; these lie in two natural families distinguished by the square class of <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"1 minus 24 beta left-parenthesis mod script l right-parenthesis\">\u0000 <mml:semantics>\u0000 <mml:mrow>\u0000 ","PeriodicalId":377306,"journal":{"name":"Transactions of the American Mathematical Society, Series B","volume":"19 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"121577100","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 5
The 𝐴₂ Andrews–Gordon identities and cylindric partitions 2 - Andrews-Gordon恒等式和柱面划分
Transactions of the American Mathematical Society, Series B Pub Date : 2021-11-15 DOI: 10.1090/btran/147
S. Warnaar
{"title":"The 𝐴₂ Andrews–Gordon identities and cylindric partitions","authors":"S. Warnaar","doi":"10.1090/btran/147","DOIUrl":"https://doi.org/10.1090/btran/147","url":null,"abstract":"<p>Inspired by a number of recent papers by Corteel, Dousse, Foda, Uncu and Welsh on cylindric partitions and Rogers–Ramanujan-type identities, we obtain the <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"normal upper A 2\">\u0000 <mml:semantics>\u0000 <mml:msub>\u0000 <mml:mrow class=\"MJX-TeXAtom-ORD\">\u0000 <mml:mi mathvariant=\"normal\">A</mml:mi>\u0000 </mml:mrow>\u0000 <mml:mn>2</mml:mn>\u0000 </mml:msub>\u0000 <mml:annotation encoding=\"application/x-tex\">mathrm {A}_2</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula> (or <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"normal upper A 2 Superscript left-parenthesis 1 right-parenthesis\">\u0000 <mml:semantics>\u0000 <mml:msubsup>\u0000 <mml:mrow class=\"MJX-TeXAtom-ORD\">\u0000 <mml:mi mathvariant=\"normal\">A</mml:mi>\u0000 </mml:mrow>\u0000 <mml:mn>2</mml:mn>\u0000 <mml:mrow class=\"MJX-TeXAtom-ORD\">\u0000 <mml:mo stretchy=\"false\">(</mml:mo>\u0000 <mml:mn>1</mml:mn>\u0000 <mml:mo stretchy=\"false\">)</mml:mo>\u0000 </mml:mrow>\u0000 </mml:msubsup>\u0000 <mml:annotation encoding=\"application/x-tex\">mathrm {A}_2^{(1)}</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula>) analogues of the celebrated Andrews–Gordon identities. We further prove <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"q\">\u0000 <mml:semantics>\u0000 <mml:mi>q</mml:mi>\u0000 <mml:annotation encoding=\"application/x-tex\">q</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula>-series identities that correspond to the infinite-level limit of the Andrews–Gordon identities for <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"normal upper A Subscript r minus 1\">\u0000 <mml:semantics>\u0000 <mml:msub>\u0000 <mml:mrow class=\"MJX-TeXAtom-ORD\">\u0000 <mml:mi mathvariant=\"normal\">A</mml:mi>\u0000 </mml:mrow>\u0000 <mml:mrow class=\"MJX-TeXAtom-ORD\">\u0000 <mml:mi>r</mml:mi>\u0000 <mml:mo>−<!-- − --></mml:mo>\u0000 <mml:mn>1</mml:mn>\u0000 </mml:mrow>\u0000 </mml:msub>\u0000 <mml:annotation encoding=\"application/x-tex\">mathrm {A}_{r-1}</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula> (or <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"normal upper A Subscript r minus 1 Superscript left-parenthesis 1 right-parenthesis\">\u0000 <mml:semantics>\u0000 <mml:msubsup>\u0000 <mml:mrow class=\"MJX-TeXAtom-ORD\">\u0000 <mml:mi mathvariant=\"normal\">A</mml:mi>\u0000 </mml:mrow>\u0000 <mml:mrow class=\"MJX-TeXAtom-ORD\">\u0000 <mml:mi>r</mml:mi>\u0000 <mml:mo>−<!-- − --></mml:mo>\u0000 <mml:mn>1</mml:mn>\u0000 </mml:mrow>\u0000 <mml:mrow class=\"MJX-TeXAtom-ORD\">\u0000 <mml:mo stretchy=\"false\">(</mml:mo>\u0000 <mml:mn>1</mml:mn>\u0000 <mml:mo stretchy=\"false\">)</mml:mo>\u0000 </mml:mrow>\u0000 </mml:msubsup>\u0000 <mml:ann","PeriodicalId":377306,"journal":{"name":"Transactions of the American Mathematical Society, Series B","volume":"68 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"124553895","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 5
Normal subgroups of big mapping class groups 大映射类群的正规子群
Transactions of the American Mathematical Society, Series B Pub Date : 2021-10-15 DOI: 10.1090/btran/108
Danny Calegari, Lvzhou Chen
{"title":"Normal subgroups of big mapping class groups","authors":"Danny Calegari, Lvzhou Chen","doi":"10.1090/btran/108","DOIUrl":"https://doi.org/10.1090/btran/108","url":null,"abstract":"<p>Let <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper S\">\u0000 <mml:semantics>\u0000 <mml:mi>S</mml:mi>\u0000 <mml:annotation encoding=\"application/x-tex\">S</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula> be a surface and let <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper M o d left-parenthesis upper S comma upper K right-parenthesis\">\u0000 <mml:semantics>\u0000 <mml:mrow>\u0000 <mml:mi>Mod</mml:mi>\u0000 <mml:mo>⁡<!-- ⁡ --></mml:mo>\u0000 <mml:mo stretchy=\"false\">(</mml:mo>\u0000 <mml:mi>S</mml:mi>\u0000 <mml:mo>,</mml:mo>\u0000 <mml:mi>K</mml:mi>\u0000 <mml:mo stretchy=\"false\">)</mml:mo>\u0000 </mml:mrow>\u0000 <mml:annotation encoding=\"application/x-tex\">operatorname {Mod}(S,K)</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula> be the mapping class group of <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper S\">\u0000 <mml:semantics>\u0000 <mml:mi>S</mml:mi>\u0000 <mml:annotation encoding=\"application/x-tex\">S</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula> permuting a Cantor subset <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper K subset-of upper S\">\u0000 <mml:semantics>\u0000 <mml:mrow>\u0000 <mml:mi>K</mml:mi>\u0000 <mml:mo>⊂<!-- ⊂ --></mml:mo>\u0000 <mml:mi>S</mml:mi>\u0000 </mml:mrow>\u0000 <mml:annotation encoding=\"application/x-tex\">K subset S</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula>. We prove two structure theorems for normal subgroups of <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper M o d left-parenthesis upper S comma upper K right-parenthesis\">\u0000 <mml:semantics>\u0000 <mml:mrow>\u0000 <mml:mi>Mod</mml:mi>\u0000 <mml:mo>⁡<!-- ⁡ --></mml:mo>\u0000 <mml:mo stretchy=\"false\">(</mml:mo>\u0000 <mml:mi>S</mml:mi>\u0000 <mml:mo>,</mml:mo>\u0000 <mml:mi>K</mml:mi>\u0000 <mml:mo stretchy=\"false\">)</mml:mo>\u0000 </mml:mrow>\u0000 <mml:annotation encoding=\"application/x-tex\">operatorname {Mod}(S,K)</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula>.</p>\u0000\u0000<p>(Purity:) if <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper S\">\u0000 <mml:semantics>\u0000 <mml:mi>S</mml:mi>\u0000 <mml:annotation encoding=\"application/x-tex\">S</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula> has finite type, every normal subgroup of <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper M o d left-parenthesis upper S comma upper K right-parenthesis\">\u0000 <mml:semantics>\u0000 <mml:mrow>\u0000 <mml:mi>Mod</mml:mi>\u0000 <mml:mo>⁡<!-- ⁡ --></mml:mo>\u0000 <mml:mo stretchy=\"false\">(</mml:mo>\u0000 <mml:mi>S</mml:mi>\u0000 <mml:mo>,</mml:mo>\u0000 <mml:mi>K","PeriodicalId":377306,"journal":{"name":"Transactions of the American Mathematical Society, Series B","volume":"61 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"121640041","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 11
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信