{"title":"Correction to “A finite basis theorem for difference-term varieties with a finite residual bound”","authors":"K. Kearnes, Á. Szendrei, R. Willard","doi":"10.1090/btran/120","DOIUrl":"https://doi.org/10.1090/btran/120","url":null,"abstract":"There is a gap in our proof [Trans. Amer. Math. Soc. 368 (2016), pp. 2115–2143, Lemma 6.2]. We direct readers to a paper that fills the gap.","PeriodicalId":377306,"journal":{"name":"Transactions of the American Mathematical Society, Series B","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"129411102","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Pseudo-Anosov subgroups of general fibered 3–manifold groups","authors":"C. Leininger, Jacob Russell","doi":"10.1090/btran/157","DOIUrl":"https://doi.org/10.1090/btran/157","url":null,"abstract":"We show that finitely generated and purely pseudo-Anosov subgroups of fundamental groups of fibered 3–manifolds with reducible monodromy are convex cocompact as subgroups of the mapping class group via the Birman exact sequence. Combined with results of Dowdall–Kent–Leininger and Kent–Leininger–Schleimer, this establishes the result for the image of all such fibered 3–manifold groups in the mapping class group.","PeriodicalId":377306,"journal":{"name":"Transactions of the American Mathematical Society, Series B","volume":"2012 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"125650316","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A. Anderson, M. Dostert, P. Grabner, Ryan Matzke, T. Stepaniuk
{"title":"Riesz and Green energy on projective spaces","authors":"A. Anderson, M. Dostert, P. Grabner, Ryan Matzke, T. Stepaniuk","doi":"10.1090/btran/161","DOIUrl":"https://doi.org/10.1090/btran/161","url":null,"abstract":"In this paper we study Riesz, Green and logarithmic energy on two-point homogeneous spaces. More precisely we consider the real, the complex, the quaternionic and the Cayley projective spaces. For each of these spaces we provide upper estimates for the mentioned energies using determinantal point processes. Moreover, we determine lower bounds for these energies of the same order of magnitude.","PeriodicalId":377306,"journal":{"name":"Transactions of the American Mathematical Society, Series B","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"127336873","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The Legendre-Hardy inequality on bounded domains","authors":"Jaeyoung Byeon, Sangdon Jin","doi":"10.1090/btran/75","DOIUrl":"https://doi.org/10.1090/btran/75","url":null,"abstract":"<p>There have been numerous studies on Hardy’s inequality on a bounded domain, which holds for functions vanishing on the boundary. On the other hand, the classical Legendre differential equation defined in an interval can be regarded as a Neumann version of the Hardy inequality with subcritical weight functions. In this paper we study a Neumann version of the Hardy inequality on a bounded <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper C squared\">\u0000 <mml:semantics>\u0000 <mml:msup>\u0000 <mml:mi>C</mml:mi>\u0000 <mml:mn>2</mml:mn>\u0000 </mml:msup>\u0000 <mml:annotation encoding=\"application/x-tex\">C^2</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula>-domain in <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"double-struck upper R Superscript n\">\u0000 <mml:semantics>\u0000 <mml:msup>\u0000 <mml:mrow class=\"MJX-TeXAtom-ORD\">\u0000 <mml:mi mathvariant=\"double-struck\">R</mml:mi>\u0000 </mml:mrow>\u0000 <mml:mi>n</mml:mi>\u0000 </mml:msup>\u0000 <mml:annotation encoding=\"application/x-tex\">mathbb {R}^n</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula> of the following form <disp-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"integral Underscript normal upper Omega Endscripts d Superscript beta Baseline left-parenthesis x right-parenthesis StartAbsoluteValue nabla u left-parenthesis x right-parenthesis EndAbsoluteValue squared d x greater-than-or-equal-to upper C left-parenthesis alpha comma beta right-parenthesis integral Underscript normal upper Omega Endscripts StartFraction StartAbsoluteValue u left-parenthesis x right-parenthesis EndAbsoluteValue squared Over d Superscript alpha Baseline left-parenthesis x right-parenthesis EndFraction d x with integral Underscript normal upper Omega Endscripts StartFraction u left-parenthesis x right-parenthesis Over d Superscript alpha Baseline left-parenthesis x right-parenthesis EndFraction d x equals 0 comma\">\u0000 <mml:semantics>\u0000 <mml:mrow>\u0000 <mml:msub>\u0000 <mml:mo>∫<!-- ∫ --></mml:mo>\u0000 <mml:mi mathvariant=\"normal\">Ω<!-- Ω --></mml:mi>\u0000 </mml:msub>\u0000 <mml:msup>\u0000 <mml:mi>d</mml:mi>\u0000 <mml:mrow class=\"MJX-TeXAtom-ORD\">\u0000 <mml:mi>β<!-- β --></mml:mi>\u0000 </mml:mrow>\u0000 </mml:msup>\u0000 <mml:mo stretchy=\"false\">(</mml:mo>\u0000 <mml:mi>x</mml:mi>\u0000 <mml:mo stretchy=\"false\">)</mml:mo>\u0000 <mml:mrow class=\"MJX-TeXAtom-ORD\">\u0000 <mml:mo stretchy=\"false\">|</mml:mo>\u0000 </mml:mrow>\u0000 <mml:mi mathvariant=\"normal\">∇<!-- ∇ --></mml:mi>\u0000 <mml:mi>u</mml:mi>\u0000 <mml:mo stretchy=\"false\">(</mml:mo>\u0000 <mml:mi>x</mml:mi>\u0000 <mml:mo stretchy=\"false\">)</mml:mo>\u0000 <mml:msup>\u0000 <mml:mrow class=\"MJX-TeXAtom-ORD\">\u0000 <mml:mo stretchy=\"false\">|</mml:mo>\u0000 </mml:mrow>\u0000 <mml:mn>2</mml:mn>\u0000 </mml:msup>\u0000 <mml:mi>","PeriodicalId":377306,"journal":{"name":"Transactions of the American Mathematical Society, Series B","volume":" 8","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"120933679","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Rank growth of elliptic curves over 𝑁-th root extensions","authors":"A. Shnidman, Ariel Weiss","doi":"10.1090/btran/149","DOIUrl":"https://doi.org/10.1090/btran/149","url":null,"abstract":"<p>Fix an elliptic curve <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper E\">\u0000 <mml:semantics>\u0000 <mml:mi>E</mml:mi>\u0000 <mml:annotation encoding=\"application/x-tex\">E</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula> over a number field <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper F\">\u0000 <mml:semantics>\u0000 <mml:mi>F</mml:mi>\u0000 <mml:annotation encoding=\"application/x-tex\">F</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula> and an integer <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"n\">\u0000 <mml:semantics>\u0000 <mml:mi>n</mml:mi>\u0000 <mml:annotation encoding=\"application/x-tex\">n</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula> which is a power of <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"3\">\u0000 <mml:semantics>\u0000 <mml:mn>3</mml:mn>\u0000 <mml:annotation encoding=\"application/x-tex\">3</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula>. We study the growth of the Mordell–Weil rank of <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper E\">\u0000 <mml:semantics>\u0000 <mml:mi>E</mml:mi>\u0000 <mml:annotation encoding=\"application/x-tex\">E</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula> after base change to the fields <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper K Subscript d Baseline equals upper F left-parenthesis RootIndex 2 n StartRoot d EndRoot right-parenthesis\">\u0000 <mml:semantics>\u0000 <mml:mrow>\u0000 <mml:msub>\u0000 <mml:mi>K</mml:mi>\u0000 <mml:mi>d</mml:mi>\u0000 </mml:msub>\u0000 <mml:mo>=</mml:mo>\u0000 <mml:mi>F</mml:mi>\u0000 <mml:mo stretchy=\"false\">(</mml:mo>\u0000 <mml:mspace width=\"negativethinmathspace\" />\u0000 <mml:mroot>\u0000 <mml:mi>d</mml:mi>\u0000 <mml:mrow>\u0000 <mml:mn>2</mml:mn>\u0000 <mml:mi>n</mml:mi>\u0000 </mml:mrow>\u0000 </mml:mroot>\u0000 <mml:mo stretchy=\"false\">)</mml:mo>\u0000 </mml:mrow>\u0000 <mml:annotation encoding=\"application/x-tex\">K_d = F(!sqrt [2n]{d})</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula>. If <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper E\">\u0000 <mml:semantics>\u0000 <mml:mi>E</mml:mi>\u0000 <mml:annotation encoding=\"application/x-tex\">E</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula> admits a <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"3\">\u0000 <mml:semantics>\u0000 <mml:mn>3</mml:mn>\u0000 <mml:annotation encoding=\"application/x-tex\">3</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula>-isogeny, then we show that the average “new rank” o","PeriodicalId":377306,"journal":{"name":"Transactions of the American Mathematical Society, Series B","volume":"13 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"114567156","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Congruences like Atkin’s for the partition function","authors":"S. Ahlgren, P. Allen, S. Tang","doi":"10.1090/btran/128","DOIUrl":"https://doi.org/10.1090/btran/128","url":null,"abstract":"<p>Let <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"p left-parenthesis n right-parenthesis\">\u0000 <mml:semantics>\u0000 <mml:mrow>\u0000 <mml:mi>p</mml:mi>\u0000 <mml:mo stretchy=\"false\">(</mml:mo>\u0000 <mml:mi>n</mml:mi>\u0000 <mml:mo stretchy=\"false\">)</mml:mo>\u0000 </mml:mrow>\u0000 <mml:annotation encoding=\"application/x-tex\">p(n)</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula> be the ordinary partition function. In the 1960s Atkin found a number of examples of congruences of the form <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"p left-parenthesis upper Q cubed script l n plus beta right-parenthesis identical-to 0 left-parenthesis mod script l right-parenthesis\">\u0000 <mml:semantics>\u0000 <mml:mrow>\u0000 <mml:mi>p</mml:mi>\u0000 <mml:mo stretchy=\"false\">(</mml:mo>\u0000 <mml:msup>\u0000 <mml:mi>Q</mml:mi>\u0000 <mml:mn>3</mml:mn>\u0000 </mml:msup>\u0000 <mml:mi>ℓ<!-- ℓ --></mml:mi>\u0000 <mml:mi>n</mml:mi>\u0000 <mml:mo>+</mml:mo>\u0000 <mml:mi>β<!-- β --></mml:mi>\u0000 <mml:mo stretchy=\"false\">)</mml:mo>\u0000 <mml:mo>≡<!-- ≡ --></mml:mo>\u0000 <mml:mn>0</mml:mn>\u0000 <mml:mspace width=\"0.667em\" />\u0000 <mml:mo stretchy=\"false\">(</mml:mo>\u0000 <mml:mi>mod</mml:mi>\u0000 <mml:mspace width=\"0.333em\" />\u0000 <mml:mi>ℓ<!-- ℓ --></mml:mi>\u0000 <mml:mo stretchy=\"false\">)</mml:mo>\u0000 </mml:mrow>\u0000 <mml:annotation encoding=\"application/x-tex\">p( Q^3 ell n+beta )equiv 0pmod ell</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula> where <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"script l\">\u0000 <mml:semantics>\u0000 <mml:mi>ℓ<!-- ℓ --></mml:mi>\u0000 <mml:annotation encoding=\"application/x-tex\">ell</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula> and <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper Q\">\u0000 <mml:semantics>\u0000 <mml:mi>Q</mml:mi>\u0000 <mml:annotation encoding=\"application/x-tex\">Q</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula> are prime and <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"5 less-than-or-equal-to script l less-than-or-equal-to 31\">\u0000 <mml:semantics>\u0000 <mml:mrow>\u0000 <mml:mn>5</mml:mn>\u0000 <mml:mo>≤<!-- ≤ --></mml:mo>\u0000 <mml:mi>ℓ<!-- ℓ --></mml:mi>\u0000 <mml:mo>≤<!-- ≤ --></mml:mo>\u0000 <mml:mn>31</mml:mn>\u0000 </mml:mrow>\u0000 <mml:annotation encoding=\"application/x-tex\">5leq ell leq 31</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula>; these lie in two natural families distinguished by the square class of <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"1 minus 24 beta left-parenthesis mod script l right-parenthesis\">\u0000 <mml:semantics>\u0000 <mml:mrow>\u0000 ","PeriodicalId":377306,"journal":{"name":"Transactions of the American Mathematical Society, Series B","volume":"19 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"121577100","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Normal subgroups of big mapping class groups","authors":"Danny Calegari, Lvzhou Chen","doi":"10.1090/btran/108","DOIUrl":"https://doi.org/10.1090/btran/108","url":null,"abstract":"<p>Let <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper S\">\u0000 <mml:semantics>\u0000 <mml:mi>S</mml:mi>\u0000 <mml:annotation encoding=\"application/x-tex\">S</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula> be a surface and let <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper M o d left-parenthesis upper S comma upper K right-parenthesis\">\u0000 <mml:semantics>\u0000 <mml:mrow>\u0000 <mml:mi>Mod</mml:mi>\u0000 <mml:mo><!-- --></mml:mo>\u0000 <mml:mo stretchy=\"false\">(</mml:mo>\u0000 <mml:mi>S</mml:mi>\u0000 <mml:mo>,</mml:mo>\u0000 <mml:mi>K</mml:mi>\u0000 <mml:mo stretchy=\"false\">)</mml:mo>\u0000 </mml:mrow>\u0000 <mml:annotation encoding=\"application/x-tex\">operatorname {Mod}(S,K)</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula> be the mapping class group of <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper S\">\u0000 <mml:semantics>\u0000 <mml:mi>S</mml:mi>\u0000 <mml:annotation encoding=\"application/x-tex\">S</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula> permuting a Cantor subset <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper K subset-of upper S\">\u0000 <mml:semantics>\u0000 <mml:mrow>\u0000 <mml:mi>K</mml:mi>\u0000 <mml:mo>⊂<!-- ⊂ --></mml:mo>\u0000 <mml:mi>S</mml:mi>\u0000 </mml:mrow>\u0000 <mml:annotation encoding=\"application/x-tex\">K subset S</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula>. We prove two structure theorems for normal subgroups of <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper M o d left-parenthesis upper S comma upper K right-parenthesis\">\u0000 <mml:semantics>\u0000 <mml:mrow>\u0000 <mml:mi>Mod</mml:mi>\u0000 <mml:mo><!-- --></mml:mo>\u0000 <mml:mo stretchy=\"false\">(</mml:mo>\u0000 <mml:mi>S</mml:mi>\u0000 <mml:mo>,</mml:mo>\u0000 <mml:mi>K</mml:mi>\u0000 <mml:mo stretchy=\"false\">)</mml:mo>\u0000 </mml:mrow>\u0000 <mml:annotation encoding=\"application/x-tex\">operatorname {Mod}(S,K)</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula>.</p>\u0000\u0000<p>(Purity:) if <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper S\">\u0000 <mml:semantics>\u0000 <mml:mi>S</mml:mi>\u0000 <mml:annotation encoding=\"application/x-tex\">S</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula> has finite type, every normal subgroup of <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper M o d left-parenthesis upper S comma upper K right-parenthesis\">\u0000 <mml:semantics>\u0000 <mml:mrow>\u0000 <mml:mi>Mod</mml:mi>\u0000 <mml:mo><!-- --></mml:mo>\u0000 <mml:mo stretchy=\"false\">(</mml:mo>\u0000 <mml:mi>S</mml:mi>\u0000 <mml:mo>,</mml:mo>\u0000 <mml:mi>K","PeriodicalId":377306,"journal":{"name":"Transactions of the American Mathematical Society, Series B","volume":"61 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"121640041","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}