Rank growth of elliptic curves over 𝑁-th root extensions

A. Shnidman, Ariel Weiss
{"title":"Rank growth of elliptic curves over 𝑁-th root extensions","authors":"A. Shnidman, Ariel Weiss","doi":"10.1090/btran/149","DOIUrl":null,"url":null,"abstract":"<p>Fix an elliptic curve <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper E\">\n <mml:semantics>\n <mml:mi>E</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">E</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> over a number field <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper F\">\n <mml:semantics>\n <mml:mi>F</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">F</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> and an integer <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"n\">\n <mml:semantics>\n <mml:mi>n</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">n</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> which is a power of <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"3\">\n <mml:semantics>\n <mml:mn>3</mml:mn>\n <mml:annotation encoding=\"application/x-tex\">3</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>. We study the growth of the Mordell–Weil rank of <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper E\">\n <mml:semantics>\n <mml:mi>E</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">E</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> after base change to the fields <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper K Subscript d Baseline equals upper F left-parenthesis RootIndex 2 n StartRoot d EndRoot right-parenthesis\">\n <mml:semantics>\n <mml:mrow>\n <mml:msub>\n <mml:mi>K</mml:mi>\n <mml:mi>d</mml:mi>\n </mml:msub>\n <mml:mo>=</mml:mo>\n <mml:mi>F</mml:mi>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mspace width=\"negativethinmathspace\" />\n <mml:mroot>\n <mml:mi>d</mml:mi>\n <mml:mrow>\n <mml:mn>2</mml:mn>\n <mml:mi>n</mml:mi>\n </mml:mrow>\n </mml:mroot>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">K_d = F(\\!\\sqrt [2n]{d})</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>. If <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper E\">\n <mml:semantics>\n <mml:mi>E</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">E</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> admits a <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"3\">\n <mml:semantics>\n <mml:mn>3</mml:mn>\n <mml:annotation encoding=\"application/x-tex\">3</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>-isogeny, then we show that the average “new rank” of <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper E\">\n <mml:semantics>\n <mml:mi>E</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">E</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> over <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper K Subscript d\">\n <mml:semantics>\n <mml:msub>\n <mml:mi>K</mml:mi>\n <mml:mi>d</mml:mi>\n </mml:msub>\n <mml:annotation encoding=\"application/x-tex\">K_d</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>, appropriately defined, is bounded as the height of <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"d\">\n <mml:semantics>\n <mml:mi>d</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">d</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> goes to infinity. When <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"n equals 3\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>n</mml:mi>\n <mml:mo>=</mml:mo>\n <mml:mn>3</mml:mn>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">n = 3</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>, we moreover show that for many elliptic curves <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper E slash double-struck upper Q\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>E</mml:mi>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mo>/</mml:mo>\n </mml:mrow>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"double-struck\">Q</mml:mi>\n </mml:mrow>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">E/\\mathbb {Q}</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>, there are no new points on <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper E\">\n <mml:semantics>\n <mml:mi>E</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">E</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> over <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"double-struck upper Q left-parenthesis RootIndex 6 StartRoot d EndRoot right-parenthesis\">\n <mml:semantics>\n <mml:mrow>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"double-struck\">Q</mml:mi>\n </mml:mrow>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mroot>\n <mml:mi>d</mml:mi>\n <mml:mn>6</mml:mn>\n </mml:mroot>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\mathbb {Q}(\\sqrt [6]d)</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>, for a positive proportion of integers <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"d\">\n <mml:semantics>\n <mml:mi>d</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">d</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>. This is a horizontal analogue of a well-known result of Cornut and Vatsal [<italic>Nontriviality of Rankin-Selberg L-functions and CM points, L</italic>-functions and Galois representations, vol. 320, Cambridge Univ. Press, Cambridge, 2007, pp. 121–186]. As a corollary, we show that Hilbert’s tenth problem has a negative solution over a positive proportion of pure sextic fields <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"double-struck upper Q left-parenthesis RootIndex 6 StartRoot d EndRoot right-parenthesis\">\n <mml:semantics>\n <mml:mrow>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"double-struck\">Q</mml:mi>\n </mml:mrow>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mroot>\n <mml:mi>d</mml:mi>\n <mml:mn>6</mml:mn>\n </mml:mroot>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\mathbb {Q}(\\sqrt [6]{d})</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>.</p>\n\n<p>The proofs combine our recent work on ranks of abelian varieties in cyclotomic twist families with a technique we call the “correlation trick”, which applies in a more general context where one is trying to show simultaneous vanishing of multiple Selmer groups. We also apply this technique to families of twists of Prym surfaces, which leads to bounds on the number of rational points in sextic twist families of bielliptic genus 3 curves.</p>","PeriodicalId":377306,"journal":{"name":"Transactions of the American Mathematical Society, Series B","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions of the American Mathematical Society, Series B","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/btran/149","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Fix an elliptic curve E E over a number field F F and an integer n n which is a power of 3 3 . We study the growth of the Mordell–Weil rank of E E after base change to the fields K d = F ( d 2 n ) K_d = F(\!\sqrt [2n]{d}) . If E E admits a 3 3 -isogeny, then we show that the average “new rank” of E E over K d K_d , appropriately defined, is bounded as the height of d d goes to infinity. When n = 3 n = 3 , we moreover show that for many elliptic curves E / Q E/\mathbb {Q} , there are no new points on E E over Q ( d 6 ) \mathbb {Q}(\sqrt [6]d) , for a positive proportion of integers d d . This is a horizontal analogue of a well-known result of Cornut and Vatsal [Nontriviality of Rankin-Selberg L-functions and CM points, L-functions and Galois representations, vol. 320, Cambridge Univ. Press, Cambridge, 2007, pp. 121–186]. As a corollary, we show that Hilbert’s tenth problem has a negative solution over a positive proportion of pure sextic fields Q ( d 6 ) \mathbb {Q}(\sqrt [6]{d}) .

The proofs combine our recent work on ranks of abelian varieties in cyclotomic twist families with a technique we call the “correlation trick”, which applies in a more general context where one is trying to show simultaneous vanishing of multiple Selmer groups. We also apply this technique to families of twists of Prym surfaces, which leads to bounds on the number of rational points in sextic twist families of bielliptic genus 3 curves.

𝑁-th根扩展上椭圆曲线的秩生长
在一个数字域F F上固定一条椭圆曲线E E和一个整数n n是3的幂。我们研究了碱基改变后E E的modell - weil秩在K d = F(d 2n) K_d = F(\!\sqrt [2n]{d})。如果E - E有一个33 -等同基因,那么我们证明E - E / K - d - K_d的平均“新秩”,适当地定义,当d - d的高度趋于无穷时是有界的。当n = 3 n = 3时,我们进一步证明了对于许多椭圆曲线E/ Q E/\mathbb {Q},在E/ Q (d 6) \mathbb {Q}(\sqrt [6]d)上没有新的点,对于正比例的整数d d。这是Cornut和Vatsal [Rankin-Selberg l-函数和CM点的非平凡性,l-函数和伽罗瓦表示,卷320,剑桥大学出版社,剑桥,2007年,第121-186页]的一个著名结果的水平模拟。作为推论,我们证明了希尔伯特的第10问题在纯性域Q (d 6) \mathbb {Q}(\sqrt [6]{d})的正比例上有一个负解。证明结合了我们最近关于分环扭转族中阿贝尔变体的秩的工作和我们称之为“相关技巧”的技术,它适用于更一般的情况,即人们试图证明多个Selmer群同时消失。我们也将这一技术应用于Prym曲面的扭转族,得到了双椭圆格3曲线的六维扭转族中有理点个数的界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.70
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信