{"title":"Weak hypergraph regularity and applications to geometric Ramsey theory","authors":"N. Lyall, Á. Magyar","doi":"10.1090/btran/61","DOIUrl":null,"url":null,"abstract":"<p>Let <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"normal upper Delta equals normal upper Delta 1 times ellipsis times normal upper Delta Subscript d Baseline subset-of-or-equal-to double-struck upper R Superscript n\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi mathvariant=\"normal\">Δ<!-- Δ --></mml:mi>\n <mml:mo>=</mml:mo>\n <mml:msub>\n <mml:mi mathvariant=\"normal\">Δ<!-- Δ --></mml:mi>\n <mml:mn>1</mml:mn>\n </mml:msub>\n <mml:mo>×<!-- × --></mml:mo>\n <mml:mo>…<!-- … --></mml:mo>\n <mml:mo>×<!-- × --></mml:mo>\n <mml:msub>\n <mml:mi mathvariant=\"normal\">Δ<!-- Δ --></mml:mi>\n <mml:mi>d</mml:mi>\n </mml:msub>\n <mml:mo>⊆<!-- ⊆ --></mml:mo>\n <mml:msup>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"double-struck\">R</mml:mi>\n </mml:mrow>\n <mml:mi>n</mml:mi>\n </mml:msup>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\Delta =\\Delta _1\\times \\ldots \\times \\Delta _d\\subseteq \\mathbb {R}^n</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>, where <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"double-struck upper R Superscript n Baseline equals double-struck upper R Superscript n 1 Baseline times midline-horizontal-ellipsis times double-struck upper R Superscript n Super Subscript d\">\n <mml:semantics>\n <mml:mrow>\n <mml:msup>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"double-struck\">R</mml:mi>\n </mml:mrow>\n <mml:mi>n</mml:mi>\n </mml:msup>\n <mml:mo>=</mml:mo>\n <mml:msup>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"double-struck\">R</mml:mi>\n </mml:mrow>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:msub>\n <mml:mi>n</mml:mi>\n <mml:mn>1</mml:mn>\n </mml:msub>\n </mml:mrow>\n </mml:msup>\n <mml:mo>×<!-- × --></mml:mo>\n <mml:mo>⋯<!-- ⋯ --></mml:mo>\n <mml:mo>×<!-- × --></mml:mo>\n <mml:msup>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"double-struck\">R</mml:mi>\n </mml:mrow>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:msub>\n <mml:mi>n</mml:mi>\n <mml:mi>d</mml:mi>\n </mml:msub>\n </mml:mrow>\n </mml:msup>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\mathbb {R}^n=\\mathbb {R}^{n_1}\\times \\cdots \\times \\mathbb {R}^{n_d}</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> with each <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"normal upper Delta Subscript i Baseline subset-of-or-equal-to double-struck upper R Superscript n Super Subscript i\">\n <mml:semantics>\n <mml:mrow>\n <mml:msub>\n <mml:mi mathvariant=\"normal\">Δ<!-- Δ --></mml:mi>\n <mml:mi>i</mml:mi>\n </mml:msub>\n <mml:mo>⊆<!-- ⊆ --></mml:mo>\n <mml:msup>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"double-struck\">R</mml:mi>\n </mml:mrow>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:msub>\n <mml:mi>n</mml:mi>\n <mml:mi>i</mml:mi>\n </mml:msub>\n </mml:mrow>\n </mml:msup>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\Delta _i\\subseteq \\mathbb {R}^{n_i}</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> a non-degenerate simplex of <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"n Subscript i\">\n <mml:semantics>\n <mml:msub>\n <mml:mi>n</mml:mi>\n <mml:mi>i</mml:mi>\n </mml:msub>\n <mml:annotation encoding=\"application/x-tex\">n_i</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> points. We prove that any set <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper S subset-of-or-equal-to double-struck upper R Superscript n\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>S</mml:mi>\n <mml:mo>⊆<!-- ⊆ --></mml:mo>\n <mml:msup>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"double-struck\">R</mml:mi>\n </mml:mrow>\n <mml:mi>n</mml:mi>\n </mml:msup>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">S\\subseteq \\mathbb {R}^n</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>, with <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"n equals n 1 plus midline-horizontal-ellipsis plus n Subscript d\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>n</mml:mi>\n <mml:mo>=</mml:mo>\n <mml:msub>\n <mml:mi>n</mml:mi>\n <mml:mn>1</mml:mn>\n </mml:msub>\n <mml:mo>+</mml:mo>\n <mml:mo>⋯<!-- ⋯ --></mml:mo>\n <mml:mo>+</mml:mo>\n <mml:msub>\n <mml:mi>n</mml:mi>\n <mml:mi>d</mml:mi>\n </mml:msub>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">n=n_1+\\cdots +n_d</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> of positive upper Banach density necessarily contains an isometric copy of all sufficiently large dilates of the configuration <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"normal upper Delta\">\n <mml:semantics>\n <mml:mi mathvariant=\"normal\">Δ<!-- Δ --></mml:mi>\n <mml:annotation encoding=\"application/x-tex\">\\Delta</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>. In particular any such set <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper S subset-of-or-equal-to double-struck upper R Superscript 2 d\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>S</mml:mi>\n <mml:mo>⊆<!-- ⊆ --></mml:mo>\n <mml:msup>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"double-struck\">R</mml:mi>\n </mml:mrow>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mn>2</mml:mn>\n <mml:mi>d</mml:mi>\n </mml:mrow>\n </mml:msup>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">S\\subseteq \\mathbb {R}^{2d}</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> contains a <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"d\">\n <mml:semantics>\n <mml:mi>d</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">d</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>-dimensional cube of side length <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"lamda\">\n <mml:semantics>\n <mml:mi>λ<!-- λ --></mml:mi>\n <mml:annotation encoding=\"application/x-tex\">\\lambda</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>, for all <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"lamda greater-than-or-equal-to lamda 0 left-parenthesis upper S right-parenthesis\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>λ<!-- λ --></mml:mi>\n <mml:mo>≥<!-- ≥ --></mml:mo>\n <mml:msub>\n <mml:mi>λ<!-- λ --></mml:mi>\n <mml:mn>0</mml:mn>\n </mml:msub>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>S</mml:mi>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\lambda \\geq \\lambda _0(S)</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>. We also prove analogous results with the underlying space being the integer lattice. The proof is based on a weak hypergraph regularity lemma and an associated counting lemma developed in the context of Euclidean spaces and the integer lattice.</p>","PeriodicalId":377306,"journal":{"name":"Transactions of the American Mathematical Society, Series B","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions of the American Mathematical Society, Series B","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/btran/61","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15
Abstract
Let Δ=Δ1×…×Δd⊆Rn\Delta =\Delta _1\times \ldots \times \Delta _d\subseteq \mathbb {R}^n, where Rn=Rn1×⋯×Rnd\mathbb {R}^n=\mathbb {R}^{n_1}\times \cdots \times \mathbb {R}^{n_d} with each Δi⊆Rni\Delta _i\subseteq \mathbb {R}^{n_i} a non-degenerate simplex of nin_i points. We prove that any set S⊆RnS\subseteq \mathbb {R}^n, with n=n1+⋯+ndn=n_1+\cdots +n_d of positive upper Banach density necessarily contains an isometric copy of all sufficiently large dilates of the configuration Δ\Delta. In particular any such set S⊆R2dS\subseteq \mathbb {R}^{2d} contains a dd-dimensional cube of side length λ\lambda, for all λ≥λ0(S)\lambda \geq \lambda _0(S). We also prove analogous results with the underlying space being the integer lattice. The proof is based on a weak hypergraph regularity lemma and an associated counting lemma developed in the context of Euclidean spaces and the integer lattice.