2 - Andrews-Gordon恒等式和柱面划分

S. Warnaar
{"title":"2 - Andrews-Gordon恒等式和柱面划分","authors":"S. Warnaar","doi":"10.1090/btran/147","DOIUrl":null,"url":null,"abstract":"<p>Inspired by a number of recent papers by Corteel, Dousse, Foda, Uncu and Welsh on cylindric partitions and Rogers–Ramanujan-type identities, we obtain the <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"normal upper A 2\">\n <mml:semantics>\n <mml:msub>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"normal\">A</mml:mi>\n </mml:mrow>\n <mml:mn>2</mml:mn>\n </mml:msub>\n <mml:annotation encoding=\"application/x-tex\">\\mathrm {A}_2</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> (or <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"normal upper A 2 Superscript left-parenthesis 1 right-parenthesis\">\n <mml:semantics>\n <mml:msubsup>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"normal\">A</mml:mi>\n </mml:mrow>\n <mml:mn>2</mml:mn>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mn>1</mml:mn>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n </mml:msubsup>\n <mml:annotation encoding=\"application/x-tex\">\\mathrm {A}_2^{(1)}</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>) analogues of the celebrated Andrews–Gordon identities. We further prove <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"q\">\n <mml:semantics>\n <mml:mi>q</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">q</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>-series identities that correspond to the infinite-level limit of the Andrews–Gordon identities for <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"normal upper A Subscript r minus 1\">\n <mml:semantics>\n <mml:msub>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"normal\">A</mml:mi>\n </mml:mrow>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi>r</mml:mi>\n <mml:mo>−<!-- − --></mml:mo>\n <mml:mn>1</mml:mn>\n </mml:mrow>\n </mml:msub>\n <mml:annotation encoding=\"application/x-tex\">\\mathrm {A}_{r-1}</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> (or <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"normal upper A Subscript r minus 1 Superscript left-parenthesis 1 right-parenthesis\">\n <mml:semantics>\n <mml:msubsup>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"normal\">A</mml:mi>\n </mml:mrow>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi>r</mml:mi>\n <mml:mo>−<!-- − --></mml:mo>\n <mml:mn>1</mml:mn>\n </mml:mrow>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mn>1</mml:mn>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n </mml:msubsup>\n <mml:annotation encoding=\"application/x-tex\">\\mathrm {A}_{r-1}^{(1)}</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>) for arbitrary rank <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"r\">\n <mml:semantics>\n <mml:mi>r</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">r</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>. Our results for <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"normal upper A 2\">\n <mml:semantics>\n <mml:msub>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"normal\">A</mml:mi>\n </mml:mrow>\n <mml:mn>2</mml:mn>\n </mml:msub>\n <mml:annotation encoding=\"application/x-tex\">\\mathrm {A}_2</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> also lead to conjectural, manifestly positive, combinatorial formulas for the <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"2\">\n <mml:semantics>\n <mml:mn>2</mml:mn>\n <mml:annotation encoding=\"application/x-tex\">2</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>-variable generating function of cylindric partitions of rank <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"3\">\n <mml:semantics>\n <mml:mn>3</mml:mn>\n <mml:annotation encoding=\"application/x-tex\">3</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> and level <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"d\">\n <mml:semantics>\n <mml:mi>d</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">d</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>, such that <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"d\">\n <mml:semantics>\n <mml:mi>d</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">d</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> is not a multiple of <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"3\">\n <mml:semantics>\n <mml:mn>3</mml:mn>\n <mml:annotation encoding=\"application/x-tex\">3</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>.</p>","PeriodicalId":377306,"journal":{"name":"Transactions of the American Mathematical Society, Series B","volume":"68 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"The 𝐴₂ Andrews–Gordon identities and cylindric partitions\",\"authors\":\"S. Warnaar\",\"doi\":\"10.1090/btran/147\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Inspired by a number of recent papers by Corteel, Dousse, Foda, Uncu and Welsh on cylindric partitions and Rogers–Ramanujan-type identities, we obtain the <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"normal upper A 2\\\">\\n <mml:semantics>\\n <mml:msub>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi mathvariant=\\\"normal\\\">A</mml:mi>\\n </mml:mrow>\\n <mml:mn>2</mml:mn>\\n </mml:msub>\\n <mml:annotation encoding=\\\"application/x-tex\\\">\\\\mathrm {A}_2</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> (or <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"normal upper A 2 Superscript left-parenthesis 1 right-parenthesis\\\">\\n <mml:semantics>\\n <mml:msubsup>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi mathvariant=\\\"normal\\\">A</mml:mi>\\n </mml:mrow>\\n <mml:mn>2</mml:mn>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mo stretchy=\\\"false\\\">(</mml:mo>\\n <mml:mn>1</mml:mn>\\n <mml:mo stretchy=\\\"false\\\">)</mml:mo>\\n </mml:mrow>\\n </mml:msubsup>\\n <mml:annotation encoding=\\\"application/x-tex\\\">\\\\mathrm {A}_2^{(1)}</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>) analogues of the celebrated Andrews–Gordon identities. We further prove <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"q\\\">\\n <mml:semantics>\\n <mml:mi>q</mml:mi>\\n <mml:annotation encoding=\\\"application/x-tex\\\">q</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>-series identities that correspond to the infinite-level limit of the Andrews–Gordon identities for <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"normal upper A Subscript r minus 1\\\">\\n <mml:semantics>\\n <mml:msub>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi mathvariant=\\\"normal\\\">A</mml:mi>\\n </mml:mrow>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi>r</mml:mi>\\n <mml:mo>−<!-- − --></mml:mo>\\n <mml:mn>1</mml:mn>\\n </mml:mrow>\\n </mml:msub>\\n <mml:annotation encoding=\\\"application/x-tex\\\">\\\\mathrm {A}_{r-1}</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> (or <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"normal upper A Subscript r minus 1 Superscript left-parenthesis 1 right-parenthesis\\\">\\n <mml:semantics>\\n <mml:msubsup>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi mathvariant=\\\"normal\\\">A</mml:mi>\\n </mml:mrow>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi>r</mml:mi>\\n <mml:mo>−<!-- − --></mml:mo>\\n <mml:mn>1</mml:mn>\\n </mml:mrow>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mo stretchy=\\\"false\\\">(</mml:mo>\\n <mml:mn>1</mml:mn>\\n <mml:mo stretchy=\\\"false\\\">)</mml:mo>\\n </mml:mrow>\\n </mml:msubsup>\\n <mml:annotation encoding=\\\"application/x-tex\\\">\\\\mathrm {A}_{r-1}^{(1)}</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>) for arbitrary rank <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"r\\\">\\n <mml:semantics>\\n <mml:mi>r</mml:mi>\\n <mml:annotation encoding=\\\"application/x-tex\\\">r</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>. Our results for <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"normal upper A 2\\\">\\n <mml:semantics>\\n <mml:msub>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi mathvariant=\\\"normal\\\">A</mml:mi>\\n </mml:mrow>\\n <mml:mn>2</mml:mn>\\n </mml:msub>\\n <mml:annotation encoding=\\\"application/x-tex\\\">\\\\mathrm {A}_2</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> also lead to conjectural, manifestly positive, combinatorial formulas for the <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"2\\\">\\n <mml:semantics>\\n <mml:mn>2</mml:mn>\\n <mml:annotation encoding=\\\"application/x-tex\\\">2</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>-variable generating function of cylindric partitions of rank <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"3\\\">\\n <mml:semantics>\\n <mml:mn>3</mml:mn>\\n <mml:annotation encoding=\\\"application/x-tex\\\">3</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> and level <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"d\\\">\\n <mml:semantics>\\n <mml:mi>d</mml:mi>\\n <mml:annotation encoding=\\\"application/x-tex\\\">d</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>, such that <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"d\\\">\\n <mml:semantics>\\n <mml:mi>d</mml:mi>\\n <mml:annotation encoding=\\\"application/x-tex\\\">d</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> is not a multiple of <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"3\\\">\\n <mml:semantics>\\n <mml:mn>3</mml:mn>\\n <mml:annotation encoding=\\\"application/x-tex\\\">3</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>.</p>\",\"PeriodicalId\":377306,\"journal\":{\"name\":\"Transactions of the American Mathematical Society, Series B\",\"volume\":\"68 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transactions of the American Mathematical Society, Series B\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1090/btran/147\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions of the American Mathematical Society, Series B","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/btran/147","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

受Corteel, Dousse, Foda, Uncu和Welsh最近关于圆柱划分和rogers - ramanujan型恒等式的一些论文的启发,我们得到了与著名的Andrews-Gordon恒等式类似的a2 \ mathm {a}_2(或a2 (1) \ mathm {a}_2^{(1)})。我们进一步证明了q q级数恒等式对应于任意秩rr的Andrews-Gordon恒等式的无穷级极限,即A r−1 \ mathm {A}_{r} -1}(或A r−1 (1)\ mathm {A}_{r-1}^{(1)})。我们对a2 \ maththrm {A}_2的结果也得出了对秩为33和阶为d d的圆柱形分区的22变量生成函数的推测性的、明显正的组合公式,使得d d不是33的倍数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The 𝐴₂ Andrews–Gordon identities and cylindric partitions

Inspired by a number of recent papers by Corteel, Dousse, Foda, Uncu and Welsh on cylindric partitions and Rogers–Ramanujan-type identities, we obtain the A 2 \mathrm {A}_2 (or A 2 ( 1 ) \mathrm {A}_2^{(1)} ) analogues of the celebrated Andrews–Gordon identities. We further prove q q -series identities that correspond to the infinite-level limit of the Andrews–Gordon identities for A r 1 \mathrm {A}_{r-1} (or A r 1 ( 1 ) \mathrm {A}_{r-1}^{(1)} ) for arbitrary rank r r . Our results for A 2 \mathrm {A}_2 also lead to conjectural, manifestly positive, combinatorial formulas for the 2 2 -variable generating function of cylindric partitions of rank 3 3 and level d d , such that d d is not a multiple of 3 3 .

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.70
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信