Current Opinion in Biomedical Engineering最新文献

筛选
英文 中文
Cell Therapy for Duchenne Muscular Dystrophy Using Induced Pluripotent Stem Cell-derived Muscle Stem Cells and the Potential of Regenerative Rehabilitation 利用诱导多能干细胞衍生的肌肉干细胞治疗杜兴氏肌肉萎缩症的细胞疗法和再生康复的潜力
IF 3.9 3区 工程技术
Current Opinion in Biomedical Engineering Pub Date : 2024-02-01 DOI: 10.1016/j.cobme.2024.100523
Nana Takenaka-Ninagawa, M. Goto, Clémence Kiho Bourgeois Yoshioka, Mayuho Miki, H. Sakurai
{"title":"Cell Therapy for Duchenne Muscular Dystrophy Using Induced Pluripotent Stem Cell-derived Muscle Stem Cells and the Potential of Regenerative Rehabilitation","authors":"Nana Takenaka-Ninagawa, M. Goto, Clémence Kiho Bourgeois Yoshioka, Mayuho Miki, H. Sakurai","doi":"10.1016/j.cobme.2024.100523","DOIUrl":"https://doi.org/10.1016/j.cobme.2024.100523","url":null,"abstract":"","PeriodicalId":36748,"journal":{"name":"Current Opinion in Biomedical Engineering","volume":null,"pages":null},"PeriodicalIF":3.9,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139820261","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
3D Bioprinting strategies for recapitulation of hepatic structure and function in bioengineered liver: A State-of-the-art review 在生物工程肝脏中再现肝脏结构和功能的三维生物打印策略:最新进展综述
IF 3.9 3区 工程技术
Current Opinion in Biomedical Engineering Pub Date : 2024-02-01 DOI: 10.1016/j.cobme.2024.100526
Arka Sanyal, Sourabh Ghosh
{"title":"3D Bioprinting strategies for recapitulation of hepatic structure and function in bioengineered liver: A State-of-the-art review","authors":"Arka Sanyal, Sourabh Ghosh","doi":"10.1016/j.cobme.2024.100526","DOIUrl":"https://doi.org/10.1016/j.cobme.2024.100526","url":null,"abstract":"","PeriodicalId":36748,"journal":{"name":"Current Opinion in Biomedical Engineering","volume":null,"pages":null},"PeriodicalIF":3.9,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139831900","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Biophysical determinants of nuclear shape and mechanics and their implications for genome integrity 核形状和力学的生物物理决定因素及其对基因组完整性的影响
IF 3.9 3区 工程技术
Current Opinion in Biomedical Engineering Pub Date : 2024-01-26 DOI: 10.1016/j.cobme.2024.100521
S. Hervé, Y.A. Miroshnikova
{"title":"Biophysical determinants of nuclear shape and mechanics and their implications for genome integrity","authors":"S. Hervé,&nbsp;Y.A. Miroshnikova","doi":"10.1016/j.cobme.2024.100521","DOIUrl":"10.1016/j.cobme.2024.100521","url":null,"abstract":"<div><p>The nuclear envelope (NE) has a dual role of serving as a protective shell for the genome and a critical communication interface that compartmentalizes cells into cytoplasmic and nuclear domains. The NE is reinforced by the integrated scaffold of nuclear lamins, heterochromatin, nuclear pores, and other NE proteins with critical roles in regulating the three-dimensional architecture of the genome. Importantly, this interface is in the direct path of force transduction, emanating from the cell-extrinsic environment and generated by the cells themselves, leading to deformation of the nucleus. Alterations in the mechanical properties of NE components have profound implications for cellular dysfunction, aging, and disease. Here we discuss some of the recent findings on the biophysical properties of the nuclear periphery and how NE-derived signaling and nuclear remodeling serve as gatekeepers of genome integrity, normal ploidy, and cellular function.</p></div>","PeriodicalId":36748,"journal":{"name":"Current Opinion in Biomedical Engineering","volume":null,"pages":null},"PeriodicalIF":3.9,"publicationDate":"2024-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139633970","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Editorial overview: The next-generation of genome editing: The future is now 新一代基因组编辑:未来就在眼前
IF 3.9 3区 工程技术
Current Opinion in Biomedical Engineering Pub Date : 2024-01-23 DOI: 10.1016/j.cobme.2024.100522
Pablo Perez-Pinera, Thomas Gaj
{"title":"Editorial overview: The next-generation of genome editing: The future is now","authors":"Pablo Perez-Pinera,&nbsp;Thomas Gaj","doi":"10.1016/j.cobme.2024.100522","DOIUrl":"10.1016/j.cobme.2024.100522","url":null,"abstract":"","PeriodicalId":36748,"journal":{"name":"Current Opinion in Biomedical Engineering","volume":null,"pages":null},"PeriodicalIF":3.9,"publicationDate":"2024-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139633846","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
AAV-based CRISPR-Cas9 genome editing: Challenges and engineering opportunities 基于 AAV 的 CRISPR-Cas9 基因组编辑:挑战与工程机遇
IF 3.9 3区 工程技术
Current Opinion in Biomedical Engineering Pub Date : 2023-12-07 DOI: 10.1016/j.cobme.2023.100517
Ami M. Kabadi , Maria Katherine Mejia-Guerra , John D. Graef , Sohrab Z. Khan , Eric M. Walton , Xinzhu Wang , Charles A. Gersbach , Rachael Potter
{"title":"AAV-based CRISPR-Cas9 genome editing: Challenges and engineering opportunities","authors":"Ami M. Kabadi ,&nbsp;Maria Katherine Mejia-Guerra ,&nbsp;John D. Graef ,&nbsp;Sohrab Z. Khan ,&nbsp;Eric M. Walton ,&nbsp;Xinzhu Wang ,&nbsp;Charles A. Gersbach ,&nbsp;Rachael Potter","doi":"10.1016/j.cobme.2023.100517","DOIUrl":"10.1016/j.cobme.2023.100517","url":null,"abstract":"<div><p>Recent innovations in the field of gene therapy have paved the way for advances towards developing genome editing medicines. Despite these steps forward, challenges with viral delivery of genome editing tools persist. Efforts currently underway include developing next-generation genome editors, overcoming adeno-associated virus (AAV) packaging restrictions, improving AAV genome integrity, engineering novel AAV capsids, and minimizing the immune response. This review discusses current challenges in delivering CRISPR-Cas nuclease-based genome editing therapies using AAV and highlights emerging methods to overcome these obstacles. This includes developing smaller payloads and regulatory elements, advancing novel sequencing methods for vector characterization, engineering capsids with enhanced potency, tissue-selectivity, and ability to evade pre-existing antibodies, controlling transgene expression, and minimizing the immune response to Cas proteins.</p></div>","PeriodicalId":36748,"journal":{"name":"Current Opinion in Biomedical Engineering","volume":null,"pages":null},"PeriodicalIF":3.9,"publicationDate":"2023-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2468451123000739/pdfft?md5=23fd7e302b12d0dee1de084f88f1a6ed&pid=1-s2.0-S2468451123000739-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138617634","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Expanding the targets of therapeutic electrophysical stimulation - For the advancement of peripheral nerve regenerative rehabilitation 扩大治疗性电物理刺激的靶点——促进周围神经再生康复
IF 3.9 3区 工程技术
Current Opinion in Biomedical Engineering Pub Date : 2023-12-01 DOI: 10.1016/j.cobme.2023.100515
Shixuan Xu, Akira Ito
{"title":"Expanding the targets of therapeutic electrophysical stimulation - For the advancement of peripheral nerve regenerative rehabilitation","authors":"Shixuan Xu,&nbsp;Akira Ito","doi":"10.1016/j.cobme.2023.100515","DOIUrl":"https://doi.org/10.1016/j.cobme.2023.100515","url":null,"abstract":"<div><p><span>Peripheral nerve injury (PNI) causes long-term dysfunction and significantly affect patients' </span>quality of life<span><span><span>. However, regenerative rehabilitation, which combines rehabilitation and regenerative medicine approaches, has shown promising progress in promoting </span>nerve regeneration after PNI. This article reviews rehabilitation methods and therapeutic </span>electrophysical agents<span> (EPAs) for promoting nerve regeneration, their possible mechanisms, and the progress achieved to date in the treatment of PNI using regenerative rehabilitation with EPAs. We also discuss several factors that have the potential to optimize treatment outcomes, including the intervention target, timing, and duration. This review provides a comprehensive overview of advancements in the treatment of PNI, possible strategies to maximize treatment efficacy, and the challenges that need to be addressed.</span></span></p></div>","PeriodicalId":36748,"journal":{"name":"Current Opinion in Biomedical Engineering","volume":null,"pages":null},"PeriodicalIF":3.9,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138466742","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A new function for nuclear lamins: providing surface tension to the nuclear drop. 核片层蛋白的新功能:为核滴提供表面张力。
IF 4.7 3区 工程技术
Current Opinion in Biomedical Engineering Pub Date : 2023-12-01 Epub Date: 2023-06-20 DOI: 10.1016/j.cobme.2023.100483
Richard B Dickinson, Tanmay P Lele
{"title":"A new function for nuclear lamins: providing surface tension to the nuclear drop.","authors":"Richard B Dickinson, Tanmay P Lele","doi":"10.1016/j.cobme.2023.100483","DOIUrl":"10.1016/j.cobme.2023.100483","url":null,"abstract":"<p><p>The nuclear lamina, a conserved structure in metazoans, provides mechanical rigidity to the nuclear envelope. A decrease in lamin levels and/or lamin mutations are associated with a host of human diseases. Despite being only about 15 nm thick, perturbation of components of the nuclear lamina dramatically impacts the deformation response of the entire nucleus through mechanisms that are not well understood. Here we discuss evidence for the recently proposed 'nuclear drop' model that explains the role of A-type lamins in nuclear deformation in migrating cells. In this model, the nuclear lamina acts as an inextensible surface, supporting a surface tension when fully unfolded, that balances nuclear interior pressure. Much like a liquid drop surface where the molecularly thin interface governs surface tension and drop shape under external forces, the thin nuclear lamina imparts a surface tension on the nuclear drop to resist nuclear deformation as well as to establish nuclear shape. We discuss implications of the nuclear drop model for the function of this crucially important eukaryotic organelle.</p>","PeriodicalId":36748,"journal":{"name":"Current Opinion in Biomedical Engineering","volume":null,"pages":null},"PeriodicalIF":4.7,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10812902/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"54234085","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Pooled screening with next-generation gene editing tools. 利用新一代基因编辑工具进行联合筛选。
IF 3.9 3区 工程技术
Current Opinion in Biomedical Engineering Pub Date : 2023-12-01 Epub Date: 2023-06-21 DOI: 10.1016/j.cobme.2023.100479
Liqun Zhou, Luojia Yang, Yanzhi Feng, Sidi Chen
{"title":"Pooled screening with next-generation gene editing tools.","authors":"Liqun Zhou, Luojia Yang, Yanzhi Feng, Sidi Chen","doi":"10.1016/j.cobme.2023.100479","DOIUrl":"10.1016/j.cobme.2023.100479","url":null,"abstract":"<p><p>Pooled screening creates a pool of cells with genetic variants, allowing for the simultaneous examination for changes in behavior or function. By selectively inducing mutations or perturbing expression, it enables scientists to systematically investigate the function of genes or genetic elements. Emerging gene editing tools, such as CRISPR, coupled with advances in sequencing and computational capabilities, provide growing opportunities to understand biological processes in humans, animals, and plants as well as to identify potential targets for therapeutic interventions and agricultural research. In this review, we highlight the recent advances of pooled screens using next-generation gene editing tools along with relevant challenges and describe potential future directions of this technology.</p>","PeriodicalId":36748,"journal":{"name":"Current Opinion in Biomedical Engineering","volume":null,"pages":null},"PeriodicalIF":3.9,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10786633/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"54234068","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mechanome-guided strategies in regenerative rehabilitation 再生康复的机制引导策略
IF 3.9 3区 工程技术
Current Opinion in Biomedical Engineering Pub Date : 2023-11-30 DOI: 10.1016/j.cobme.2023.100516
Diego Jacho, Eda Yildirim-Ayan
{"title":"Mechanome-guided strategies in regenerative rehabilitation","authors":"Diego Jacho,&nbsp;Eda Yildirim-Ayan","doi":"10.1016/j.cobme.2023.100516","DOIUrl":"https://doi.org/10.1016/j.cobme.2023.100516","url":null,"abstract":"<div><p><span>Regenerative Rehabilitation represents a multifaceted approach that merges mechanobiology with therapeutic intervention to harness the body's intrinsic </span>tissue repair<span> and regeneration capacity. This review delves into the intricate interplay<span><span><span><span> between mechanical loading and cellular responses in the context of musculoskeletal tissue healing. It emphasizes the importance of understanding the phases involved in </span>translating<span><span> mechanical forces into biochemical responses at the cellular level. The review paper also covers the mechanosensitivity of macrophages, fibroblasts, and </span>mesenchymal stem cells, which play a crucial role during regenerative rehabilitation since these cells exhibit unique mechanoresponsiveness during different stages of the tissue healing process. Understanding how mechanical loading amplitude and frequency applied during regenerative rehabilitation influences </span></span>macrophage polarization<span>, fibroblast-to-myofibroblast transition (FMT), and mesenchymal stem cell differentiation is crucial for developing effective therapies for musculoskeletal tissues. In conclusion, this review underscores the significance of mechanome-guided strategies in regenerative rehabilitation. By exploring the mechanosensitivity of different cell types and their responses to mechanical loading, this field offers promising avenues for accelerating tissue healing and functional recovery, ultimately enhancing the quality of life<span> for individuals with musculoskeletal injuries and </span></span></span>degenerative diseases.</span></span></p></div>","PeriodicalId":36748,"journal":{"name":"Current Opinion in Biomedical Engineering","volume":null,"pages":null},"PeriodicalIF":3.9,"publicationDate":"2023-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138769743","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Optical point of care devices for diagnosis of urinary tract infections 诊断尿路感染的光学护理点装置
IF 3.9 3区 工程技术
Current Opinion in Biomedical Engineering Pub Date : 2023-11-08 DOI: 10.1016/j.cobme.2023.100513
Weiming Xu , Esha Venkat , Hatice Ceylan Koydemir
{"title":"Optical point of care devices for diagnosis of urinary tract infections","authors":"Weiming Xu ,&nbsp;Esha Venkat ,&nbsp;Hatice Ceylan Koydemir","doi":"10.1016/j.cobme.2023.100513","DOIUrl":"10.1016/j.cobme.2023.100513","url":null,"abstract":"<div><p>Urinary tract infections (UTIs) are common bacterial infections affecting any part of the urinary system. Accurate and rapid UTI diagnosis is crucial for initiating appropriate and effective treatment and preventing further complications. Traditional diagnostic methods based on culturing require specialized expertise, controlled environments for culturing urine specimens, and specific analysis environments, and these methods are time-consuming. In contrast, optical devices offer tremendous advantages, including enhanced sensitivity, user-friendliness, and portability. These devices can be integrated with conventional methods to enhance the accessibility of diagnosis techniques, especially in resource-limited settings. Further research is needed to optimize optical devices' analytical performance and cost-effectiveness to harness their full potential in UTI diagnosis. This review delves into recent advancements in optics-based devices for urinary pathogen detection. After providing a succinct overview of UTIs and existing clinical practices for their detection, diagnosis, and treatment, the most recent studies about optical diagnostic technologies for UTI diagnosis were reviewed, and an exploration of the future prospects and conclusive insights were discussed. Unveiling the potential of optical technology for UTI diagnosis promises to revolutionize healthcare and exemplifies the inexhaustible possibilities at the intersection of science and medicine.</p></div>","PeriodicalId":36748,"journal":{"name":"Current Opinion in Biomedical Engineering","volume":null,"pages":null},"PeriodicalIF":3.9,"publicationDate":"2023-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2468451123000697/pdfft?md5=4d80843e0e0fdf3c39596b93289611a9&pid=1-s2.0-S2468451123000697-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135516015","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信