Interface tissues of the mesoderm: Periosteum, ligament, interosseous membrane, & myofascial tissues, an inspiration for next generation medical textiles
Sotiria Anastopolous , Lucy Ngo , Joanna Ng , Vina Putra , Melissa L. Knothe Tate
{"title":"Interface tissues of the mesoderm: Periosteum, ligament, interosseous membrane, & myofascial tissues, an inspiration for next generation medical textiles","authors":"Sotiria Anastopolous , Lucy Ngo , Joanna Ng , Vina Putra , Melissa L. Knothe Tate","doi":"10.1016/j.cobme.2024.100543","DOIUrl":null,"url":null,"abstract":"<div><p>Deriving from the mesoderm at mesenchymal condensation, in the nascent musculoskeletal system, interface tissues include periosteum, ligament, interosseous membrane, and joint capsules. They comprise common structural proteins, collagen, and elastin, woven into anisotropic composites with toughness and elasticity adapted to withstand prevailing dynamic loads. Together with their composite fibrous weave structure, the interface tissues' respective resident cells imbue unique properties to the tissues. For example, the progenitor cells of the periosteal cambium layer express claudin, a tight junction protein that confers anisotropic and smart functional barrier properties to the periosteal membrane; <em>e.g.</em> where permeability is higher in the muscle to bone direction than <em>vice versa</em> under high flow rates typical for trauma. This review compares properties of interface tissues, focusing on periosteum, the interosseous membrane (a specialized ligament structure), and the deep (investing) fascia. It highlights current gaps in understanding as well as opportunities to create and advance manufacture next generation medical textiles and devices that emulate interface tissue properties.</p></div>","PeriodicalId":36748,"journal":{"name":"Current Opinion in Biomedical Engineering","volume":"31 ","pages":"Article 100543"},"PeriodicalIF":4.7000,"publicationDate":"2024-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Opinion in Biomedical Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2468451124000230","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Deriving from the mesoderm at mesenchymal condensation, in the nascent musculoskeletal system, interface tissues include periosteum, ligament, interosseous membrane, and joint capsules. They comprise common structural proteins, collagen, and elastin, woven into anisotropic composites with toughness and elasticity adapted to withstand prevailing dynamic loads. Together with their composite fibrous weave structure, the interface tissues' respective resident cells imbue unique properties to the tissues. For example, the progenitor cells of the periosteal cambium layer express claudin, a tight junction protein that confers anisotropic and smart functional barrier properties to the periosteal membrane; e.g. where permeability is higher in the muscle to bone direction than vice versa under high flow rates typical for trauma. This review compares properties of interface tissues, focusing on periosteum, the interosseous membrane (a specialized ligament structure), and the deep (investing) fascia. It highlights current gaps in understanding as well as opportunities to create and advance manufacture next generation medical textiles and devices that emulate interface tissue properties.