{"title":"Decoding range variability in electric vehicles: Unravelling the influence of cell-to-cell parameter variation and pack configuration","authors":"Sourabh Singh , Sarbani Mandal , Sai Krishna Mulpuri , Bikash Sah , Praveen Kumar","doi":"10.1016/j.etran.2024.100329","DOIUrl":"https://doi.org/10.1016/j.etran.2024.100329","url":null,"abstract":"<div><p>This study addresses the common occurrence of cell-to-cell variations arising from manufacturing tolerances and their implications during battery production. The focus is on assessing the impact of these inherent differences in cells and exploring diverse cell and module connection methods on battery pack performance and their subsequent influence on the driving range of electric vehicles (EVs). The analysis spans three battery pack sizes, encompassing various constant discharge rates and nine distinct drive cycles representative of driving behaviours across different regions of India. Two interconnection topologies, categorised as “string” and “cross”, are examined. The findings reveal that cross-connected packs exhibit reduced energy output compared to string-connected configurations, which is reflected in the driving range outcomes observed during drive cycle simulations. Additionally, the study investigates the effects of standard deviation in cell parameters, concluding that an increased standard deviation (SD) leads to decreased energy output from the packs. Notably, string-connected packs demonstrate superior performance in terms of extractable energy under such conditions.</p></div>","PeriodicalId":36355,"journal":{"name":"Etransportation","volume":"20 ","pages":"Article 100329"},"PeriodicalIF":11.9,"publicationDate":"2024-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2590116824000195/pdfft?md5=95f9f4099b650810285e13132b2d7ba7&pid=1-s2.0-S2590116824000195-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140540281","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
EtransportationPub Date : 2024-04-03DOI: 10.1016/j.etran.2024.100328
Qinzheng Wang , Huaibin Wang , Chengshan Xu , Changyong Jin , Shilin Wang , Lejun Xu , Jiting Ouyang , Xuning Feng
{"title":"Multidimensional fire propagation of lithium-ion phosphate batteries for energy storage","authors":"Qinzheng Wang , Huaibin Wang , Chengshan Xu , Changyong Jin , Shilin Wang , Lejun Xu , Jiting Ouyang , Xuning Feng","doi":"10.1016/j.etran.2024.100328","DOIUrl":"https://doi.org/10.1016/j.etran.2024.100328","url":null,"abstract":"<div><p>In electrochemical energy storage stations, battery modules are stacked layer by layer on the racks. During the thermal runaway process of the battery, combustible mixture gases are vented. Once ignited by high-temperature surfaces or arcing, the resulting intense jet fire can cause the spread of both the same-layer and upper-layer battery modules. The direction of thermal runaway propagation of the battery involves both horizontal and vertical dimensions. Currently, there is a lack of quantitative research on the multidimensional fire propagation mechanism and heat flow patterns of the “thermal runaway-spontaneous heating-flaming” process in lithium-ion phosphate batteries. This paper conducts multidimensional fire propagation experiments on lithium-ion phosphate batteries in a realistic electrochemical energy storage station scenario. It investigates the propagation characteristics of lithium-ion phosphate batteries in both horizontal and vertical directions, the heat flow patterns during multidimensional propagation, and elucidates the influence mechanism of flame radiation heat transfer on thermal runaway propagation. Research indicates that when the heat transfer reaches 56.6 kJ, it triggers the fire propagation of cell. The heat required to trigger the fire propagation of a battery module is 35.99 kJ. In vertical fire propagation, the thermal runaway propagation time of the upper module is shorter (reduced from 122.3 s to 62.3 s), the temperature is higher (increased from 610.6 °C to 645 °C), the heat release is greater (increased from 205.69 kJ to 221.05 kJ), and the combustion is more intense. The research results of this paper can provide a theoretical basis and technical guidance for the fire safety design of energy storage stations.</p></div>","PeriodicalId":36355,"journal":{"name":"Etransportation","volume":"20 ","pages":"Article 100328"},"PeriodicalIF":11.9,"publicationDate":"2024-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140350845","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
EtransportationPub Date : 2024-03-19DOI: 10.1016/j.etran.2024.100327
Fengman Sun , Qian Di , Ming Chen , Haijun Liu , Haijiang Wang
{"title":"Exploring local oxygen transport in low-Pt loading proton exchange membrane fuel cells: A comprehensive review","authors":"Fengman Sun , Qian Di , Ming Chen , Haijun Liu , Haijiang Wang","doi":"10.1016/j.etran.2024.100327","DOIUrl":"10.1016/j.etran.2024.100327","url":null,"abstract":"<div><p>In light of the widespread commercialization of proton exchange membrane fuel cells (PEMFCs) on a global scale, the expeditious resolution of challenges pertaining to cost and performance has become imperative. The strategy of fabricating cathode featuring ultralow Pt loading stands out as a pivotal technical avenue for enhancing the cost competitiveness of PEMFCs. Whereas, within low-Pt electrode, local oxygen transport resistance (<em>R</em><sub>Local</sub>), emanated from the oxygen transport process through the ionomer film positioned on Pt surface, assumes a paramount role in the manifestation of concentration polarization losses. This comprehensive review encapsulates the latest strides in understanding and addressing <em>R</em><sub>Local</sub>, while concurrently delineating prospective for future research endeavors in this domain. Commencing with an elucidation of the genesis of <em>R</em><sub>Local</sub>, the micro-characterization technologies in discerning Pt/ionomer interface structure are systematically scrutinized. Subsequently, a retrospect of methodologies and theoretical models for quantifying <em>R</em><sub>Local</sub> is presented, encompassing both experimental test and numerical simulation. After that, we critically examine a spectrum of innovative and efficacious strategies aimed at mitigating <em>R</em><sub>Local</sub>, including modifying Pt surface, designing carbon support, tuning ionomer, optimizing solvent, and constructing catalyst layer. Finally, this review proffers forward-looking viewpoints on the research orientation and methods of <em>R</em><sub>Local</sub> in future investigations, which significantly contribute to the cognition of local oxygen transport and, concomitantly, design of high-performance fuel cell electrodes.</p></div>","PeriodicalId":36355,"journal":{"name":"Etransportation","volume":"20 ","pages":"Article 100327"},"PeriodicalIF":11.9,"publicationDate":"2024-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140182096","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
EtransportationPub Date : 2024-03-15DOI: 10.1016/j.etran.2024.100326
Cesar Diaz-Londono , Gabriele Fambri , Paolo Maffezzoni , Giambattista Gruosso
{"title":"Enhanced EV charging algorithm considering data-driven workplace chargers categorization with multiple vehicle types","authors":"Cesar Diaz-Londono , Gabriele Fambri , Paolo Maffezzoni , Giambattista Gruosso","doi":"10.1016/j.etran.2024.100326","DOIUrl":"https://doi.org/10.1016/j.etran.2024.100326","url":null,"abstract":"<div><p>The increasing penetration of Electric Vehicles (EVs) presents significant challenges in integrating EV chargers. To address this, precise smart EV charging strategies are imperative to prevent a surge in peak power demand and ensure seamless charger integration. In this article, a smart EV charging pool algorithm employing optimal control is proposed. The main objective is to minimize the charge point operator’s cost while maximizing its EV chargers’ flexibility. The algorithm adeptly manages the charger pilot signal standard and accommodates the non-ideal behavior of EV batteries across various vehicle types. It ensures the fulfillment of vehicle owners’ preferences regarding the departure state of charge. Additionally, we develop a data-driven characterization of EV workplace chargers, considering power levels and estimated battery capacities. A novel methodology for computing the EV battery’s arrival state of charge is also introduced. The efficacy of the EV charging algorithm is evaluated through multiple simulation campaigns, ranging from individual charger responses to comprehensive charging pool analyses. Simulation results are compared with those of a typical minimum-time strategy, revealing cost reductions and significant power savings based on the flexibility of EV chargers. This novel algorithm emerges as a valuable tool for accurately managing the power demanded by an EV charging station, offering flexible services to the electrical grid.</p></div>","PeriodicalId":36355,"journal":{"name":"Etransportation","volume":"20 ","pages":"Article 100326"},"PeriodicalIF":11.9,"publicationDate":"2024-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S259011682400016X/pdfft?md5=512c291d2886f490b86aaa946e1f9ef3&pid=1-s2.0-S259011682400016X-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140138463","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
EtransportationPub Date : 2024-03-06DOI: 10.1016/j.etran.2024.100325
Wensheng Yang , Canbing Li , Xinxi Li , Hewu Wang , Jian Deng , Tieqiang Fu , Yunjun Luo , Yan Wang , Kunlong Xue , Guoqing Zhang , Dequan Zhou , Yaoxiang Du , Xuxiong Li
{"title":"High flame retardant composite phase change materials with triphenyl phosphate for thermal safety system of power battery module","authors":"Wensheng Yang , Canbing Li , Xinxi Li , Hewu Wang , Jian Deng , Tieqiang Fu , Yunjun Luo , Yan Wang , Kunlong Xue , Guoqing Zhang , Dequan Zhou , Yaoxiang Du , Xuxiong Li","doi":"10.1016/j.etran.2024.100325","DOIUrl":"https://doi.org/10.1016/j.etran.2024.100325","url":null,"abstract":"<div><p>The thermal safety of battery pack has attracted much attention accompany with the growth in electric vehicles (EVs) in recent years. Although various battery thermal management systems (BTMS) are investigated by many research, the thermal runaway propagation (TRP) of battery packs under extremely abused conditions is just at the level of structural design and theoretical model. How to explore an innovative technology to improve the integrated thermal safety including the BTMS and TRP is still a great challenge. In this study, a multifunctional flame-retardant paraffin (PA)/styrene-butadiene-styrene (SBS)/expanded graphite (EG)/methylphenyl silicone resin (MPS)/triphenyl phosphate (TPP) composite phase change material (PSEMT) has successfully prepared. Besides, it has applied in 26650 ternary power battery modules. When the proportion of MPS and TPP is 1:2, the experimental results reveal that PSEMT possesses high thermal stability, and excellent flame-retardant properties owing to synergistic flame-retardant effect with phosphorus and silicon. Further, the cylindrical 26650 battery module with PSEMT exhibits optimum thermal management performance. Even at 2C discharge rate after ten cycles, the maximum operating temperature of battery module can still be maintained below 50 °C, and the maximum temperature difference is controlled within 4.6 °C. Additionally, it displays an excellent thermal runaway suppression through triggering by multiple heat sources. What's more, the battery with PSEMT can suppress the peak temperature and delay the occurrence time of thermal runaway. Therefore, it can be induced that the battery module with PSEMT can effectively avoid heat accumulation and significantly reduce its thermal safety risk. This study offers a new solution with promising prospects from the perspectives of energy storage and EVs, for balancing the temperature inconsistencies in batteries and suppressing thermal runaway in the battery packs.</p></div>","PeriodicalId":36355,"journal":{"name":"Etransportation","volume":"20 ","pages":"Article 100325"},"PeriodicalIF":11.9,"publicationDate":"2024-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140067405","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
EtransportationPub Date : 2024-03-01DOI: 10.1016/j.etran.2024.100324
Jiaying Chen , Binqi Li , Jianping Li , You Gao , Zhiwei Hao , Lubing Wang
{"title":"Exploring the electrochemical and mechanical properties of lithium-ion batteries in salt spray environments","authors":"Jiaying Chen , Binqi Li , Jianping Li , You Gao , Zhiwei Hao , Lubing Wang","doi":"10.1016/j.etran.2024.100324","DOIUrl":"10.1016/j.etran.2024.100324","url":null,"abstract":"<div><p>With the pressing need to expedite the transition toward a greener marine industry, energy-efficient and eco-friendly lithium-ion batteries (LIBs) are increasingly favored. However, compared to land applications, marine environments pose unique challenges to the utilization of LIBs, thereby necessitating targeted safety measures. In this study, prismatic LIBs (PLIBs) are subjected to standard salt spray tests to emulate marine environments, and the resultant morphological changes and external voltage response of the batteries under the corrosion behavior are analyzed. Subsequently, the impacts of the salt spray environment on the electrochemical performance of PLIBs are assessed through a range of characterization techniques including scanning electron microscopy (SEM), electrochemical impedance spectroscopy (EIS), and charge-discharge test. Finally, quasi-static ball indentation tests are carried out on the corroded batteries to study the behaviors under mechanical abusive loading scenarios. Results reveal that the most prominent effect of the salt spray environment on the batteries is the occurrence of swelling, attributable to the imperfect sealing of the battery tabs. This study represents an innovative exploration of the viability of LIBs in the marine environments, providing fundamental theoretical guidance for early detection of battery corrosion and collision risks, as well as facilitating protective design considerations.</p></div>","PeriodicalId":36355,"journal":{"name":"Etransportation","volume":"20 ","pages":"Article 100324"},"PeriodicalIF":11.9,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140057513","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
EtransportationPub Date : 2024-02-29DOI: 10.1016/j.etran.2024.100322
Jichao Hong , Fengwei Liang , Haixu Yang , Chi Zhang , Xinyang Zhang , Huaqin Zhang , Wei Wang , Kerui Li , Jingsong Yang
{"title":"Multi- forword-step state of charge prediction for real-world electric vehicles battery systems using a novel LSTM-GRU hybrid neural network","authors":"Jichao Hong , Fengwei Liang , Haixu Yang , Chi Zhang , Xinyang Zhang , Huaqin Zhang , Wei Wang , Kerui Li , Jingsong Yang","doi":"10.1016/j.etran.2024.100322","DOIUrl":"https://doi.org/10.1016/j.etran.2024.100322","url":null,"abstract":"<div><p>Battery state-of-charge (SOC) is an evaluation metric for the electric vehicles' remaining driving range and one of the main monitoring parameters for battery management systems. However, there are rarely data-driven studies on multi-step prediction of battery SOC, which cannot accurately provide and realize electric vehicle remaining driving range prediction and SOC safety pre-warning. Therefore, this study aims to perform SOC multi-forward-step prediction for real-world vehicle battery system by a novel hybrid long short-term memory and gate recurrent unit (LSTM-GRU) neural network. The paper firstly analyses the characteristics of correlation analysis and adopts similarity metric method to reduce the parameter dimensionality for the input neural network. Then the advantages between LSTM-GRU, LSTM, GRU, and long short-term memory and convolutional neural network (LSTM-CNN) are analyzed by comparing experimental and real-world vehicle data, and the effectiveness and accuracy of the proposed method is demonstrated. In addition, the proposed method robustness is verified by adding noise data to the input parameters. In this study, the prediction results were validated with real-world vehicle data in spring, summer, autumn and winter, and the proposed method achieved a minimum MAPE and MAE of 1.03% and 0.73 for summer conditions, while the minimum standard deviation of prediction was 0.06% for experimental conditions. The research process shows that the method has high accuracy when applied to large data and is expected to be applied to real-world vehicle battery system SOC multi-forward-step prediction in the future.</p></div>","PeriodicalId":36355,"journal":{"name":"Etransportation","volume":"20 ","pages":"Article 100322"},"PeriodicalIF":11.9,"publicationDate":"2024-02-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140030197","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
EtransportationPub Date : 2024-02-27DOI: 10.1016/j.etran.2024.100323
Ricardo Reibsch , Jakob Gemassmer , Tabea Katerbau
{"title":"Low voltage grid resilience: Evaluating electric vehicle charging strategies in the context of the grid development plan Germany","authors":"Ricardo Reibsch , Jakob Gemassmer , Tabea Katerbau","doi":"10.1016/j.etran.2024.100323","DOIUrl":"10.1016/j.etran.2024.100323","url":null,"abstract":"<div><p>The ongoing transition to decentralized renewable energy sources and sector-coupled consumers is reshaping the energy system. Changes at lower grid levels can stress lines and transformers. Crucial for a successful local energy transition are grid relief measures. Battery electric vehicles contribute to higher loads on grid equipment but also offer flexibility. This paper assesses the influence of four different charging strategies for battery electric vehicles across five representative low-voltage grids based on the grid development plan in Germany for the years 2021, 2037, and 2045. Results indicate that grid stress, specifically capacity stress, will emerge by 2037 and 2045. Decentralized photovoltaic systems are the primary contributors to this stress due to high simultaneous generation. Up to nearly 20<!--> <!-->% of photovoltaic power may need to be curtailed in 2045, especially in rural grids during the summer, to prevent overloads.</p><p>Charging strategies linked to wholesale power market prices can inadvertently lead to higher consumption-induced grid overloads, necessitating the consideration of local grid restrictions. Implementing grid-friendly charging strategies, such as reduced charging power or alignment with local photovoltaic production, can mitigate those grid overloads from almost 8<!--> <!-->% down to 0.11<!--> <!-->%. However, these charging strategies have limited impact on photovoltaic-induced overloads due to the low number of connected battery electric vehicles during the day.</p><p>In summary, appropriate charging strategies can ease low-voltage grid stress and are suitable measures to manage the challenges of decentralized energy transition and battery-electric vehicle adoption.</p></div>","PeriodicalId":36355,"journal":{"name":"Etransportation","volume":"20 ","pages":"Article 100323"},"PeriodicalIF":11.9,"publicationDate":"2024-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2590116824000134/pdfft?md5=be82a6b87cd4c102e71947b7adc55947&pid=1-s2.0-S2590116824000134-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140011361","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Recycling of spent lithium-ion batteries in view of graphite recovery: A review","authors":"Zhen Shang , Wenhao Yu , Jiahui Zhou , Xia Zhou , Zhiyuan Zeng , Rabigul Tursun , Xuegang Liu , Shengming Xu","doi":"10.1016/j.etran.2024.100320","DOIUrl":"10.1016/j.etran.2024.100320","url":null,"abstract":"<div><p>Given the exponential increase in the number of lithium-ion batteries (LIBs) used in electric cars and the sizeable quantity of waste produced at the end of their lifespans, efficient recycling of used lithium-ion batteries offers tremendous promise for practical application. While considerable efforts have been devoted to the recycling of cathode materials and other valuable components in spent lithium-ion batteries, sufficient attention has not been directed towards the spent anode graphite. Given the risks associated with limited resource supply and environmental pressure, the regeneration of spent graphite anodes from electric vehicle batteries has become a critical issue. As a preferred option, the direct regeneration strategy has been innovatively proposed to recover targeted graphite materials. To better comprehend this topic, three types of graphite are highlighted and categorized based on the source of the LIBs. Their special features, advantages, and challenges are also summarized and evaluated. More significantly, it is anticipated that the outcomes of this work could emphasize the importance of graphite recycling in the overall recycling of the spent lithium-ion battery industry.</p></div>","PeriodicalId":36355,"journal":{"name":"Etransportation","volume":"20 ","pages":"Article 100320"},"PeriodicalIF":11.9,"publicationDate":"2024-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139966185","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
EtransportationPub Date : 2024-02-20DOI: 10.1016/j.etran.2024.100321
Jinghe Shi , Hengyun Zhang , Hong Yu , Yidong Xu , Shen Xu , Lei Sheng , Xuning Feng , Xiaolin Wang
{"title":"Experimental determinations of thermophysical parameters for lithium-ion batteries: A systematic review","authors":"Jinghe Shi , Hengyun Zhang , Hong Yu , Yidong Xu , Shen Xu , Lei Sheng , Xuning Feng , Xiaolin Wang","doi":"10.1016/j.etran.2024.100321","DOIUrl":"10.1016/j.etran.2024.100321","url":null,"abstract":"<div><p>Thermophysical parameters, including the specific heat and thermal conductivity of lithium-ion batteries (LIBs), are the key parameters for the design of battery thermal management systems in electric vehicles. The evaluations of internal temperature distribution and even the thermal safety characteristics of the batteries depend highly on these thermophysical parameters under either live operation or repose condition. In this paper, the experimental studies of the specific heat and thermal conductivity of LIBs are reviewed and discussed. This review classifies the experimental studies into ex-situ and in-situ measurements. The ex-situ measurements, based on the dissection of the battery, may differ from realistic scenarios and thus the obtained parameters may not be fully applicable for thermal prediction of practical battery systems. Contrarily, in-situ measurements better represent the realistic characteristics without dismantling the battery, which can be further categorized into weighted average method, heat flow method, dedicated equipment including accelerating rate calorimeter (ARC), calibration calorimeter in insulation, self-made calorimeter method, and so on. Due to the short test time and good size adaptability, unsteady-state in-situ measurement techniques, including the calibration calorimeter and quasi-steady state techniques, are becoming the promising research directions in the future, especially for the simultaneous determination of multiple thermal parameters. The large data scatterings are pointed out based on the existing results, and the underlying mechanisms are scrutinized. To guarantee measurement accuracy, it is indispensable to calibrate the heat loss and benchmark with standard sample tests together with rigorous uncertainty analysis. The thermophysical parameters should be determined under different temperatures, states of charge (SOC) and aging conditions to enable accurate prediction of temperature profiles and degradation for LIBs with ever increasing energy density and safety risk.</p></div>","PeriodicalId":36355,"journal":{"name":"Etransportation","volume":"20 ","pages":"Article 100321"},"PeriodicalIF":11.9,"publicationDate":"2024-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139917744","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}