Etransportation最新文献

筛选
英文 中文
Enhanced EV charging algorithm considering data-driven workplace chargers categorization with multiple vehicle types 考虑到数据驱动的工作场所充电器分类和多种车辆类型,改进了电动汽车充电算法
IF 11.9 1区 工程技术
Etransportation Pub Date : 2024-03-15 DOI: 10.1016/j.etran.2024.100326
Cesar Diaz-Londono , Gabriele Fambri , Paolo Maffezzoni , Giambattista Gruosso
{"title":"Enhanced EV charging algorithm considering data-driven workplace chargers categorization with multiple vehicle types","authors":"Cesar Diaz-Londono ,&nbsp;Gabriele Fambri ,&nbsp;Paolo Maffezzoni ,&nbsp;Giambattista Gruosso","doi":"10.1016/j.etran.2024.100326","DOIUrl":"https://doi.org/10.1016/j.etran.2024.100326","url":null,"abstract":"<div><p>The increasing penetration of Electric Vehicles (EVs) presents significant challenges in integrating EV chargers. To address this, precise smart EV charging strategies are imperative to prevent a surge in peak power demand and ensure seamless charger integration. In this article, a smart EV charging pool algorithm employing optimal control is proposed. The main objective is to minimize the charge point operator’s cost while maximizing its EV chargers’ flexibility. The algorithm adeptly manages the charger pilot signal standard and accommodates the non-ideal behavior of EV batteries across various vehicle types. It ensures the fulfillment of vehicle owners’ preferences regarding the departure state of charge. Additionally, we develop a data-driven characterization of EV workplace chargers, considering power levels and estimated battery capacities. A novel methodology for computing the EV battery’s arrival state of charge is also introduced. The efficacy of the EV charging algorithm is evaluated through multiple simulation campaigns, ranging from individual charger responses to comprehensive charging pool analyses. Simulation results are compared with those of a typical minimum-time strategy, revealing cost reductions and significant power savings based on the flexibility of EV chargers. This novel algorithm emerges as a valuable tool for accurately managing the power demanded by an EV charging station, offering flexible services to the electrical grid.</p></div>","PeriodicalId":36355,"journal":{"name":"Etransportation","volume":"20 ","pages":"Article 100326"},"PeriodicalIF":11.9,"publicationDate":"2024-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S259011682400016X/pdfft?md5=512c291d2886f490b86aaa946e1f9ef3&pid=1-s2.0-S259011682400016X-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140138463","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
High flame retardant composite phase change materials with triphenyl phosphate for thermal safety system of power battery module 用于动力电池模块热安全系统的磷酸三苯酯高阻燃复合相变材料
IF 11.9 1区 工程技术
Etransportation Pub Date : 2024-03-06 DOI: 10.1016/j.etran.2024.100325
Wensheng Yang , Canbing Li , Xinxi Li , Hewu Wang , Jian Deng , Tieqiang Fu , Yunjun Luo , Yan Wang , Kunlong Xue , Guoqing Zhang , Dequan Zhou , Yaoxiang Du , Xuxiong Li
{"title":"High flame retardant composite phase change materials with triphenyl phosphate for thermal safety system of power battery module","authors":"Wensheng Yang ,&nbsp;Canbing Li ,&nbsp;Xinxi Li ,&nbsp;Hewu Wang ,&nbsp;Jian Deng ,&nbsp;Tieqiang Fu ,&nbsp;Yunjun Luo ,&nbsp;Yan Wang ,&nbsp;Kunlong Xue ,&nbsp;Guoqing Zhang ,&nbsp;Dequan Zhou ,&nbsp;Yaoxiang Du ,&nbsp;Xuxiong Li","doi":"10.1016/j.etran.2024.100325","DOIUrl":"https://doi.org/10.1016/j.etran.2024.100325","url":null,"abstract":"<div><p>The thermal safety of battery pack has attracted much attention accompany with the growth in electric vehicles (EVs) in recent years. Although various battery thermal management systems (BTMS) are investigated by many research, the thermal runaway propagation (TRP) of battery packs under extremely abused conditions is just at the level of structural design and theoretical model. How to explore an innovative technology to improve the integrated thermal safety including the BTMS and TRP is still a great challenge. In this study, a multifunctional flame-retardant paraffin (PA)/styrene-butadiene-styrene (SBS)/expanded graphite (EG)/methylphenyl silicone resin (MPS)/triphenyl phosphate (TPP) composite phase change material (PSEMT) has successfully prepared. Besides, it has applied in 26650 ternary power battery modules. When the proportion of MPS and TPP is 1:2, the experimental results reveal that PSEMT possesses high thermal stability, and excellent flame-retardant properties owing to synergistic flame-retardant effect with phosphorus and silicon. Further, the cylindrical 26650 battery module with PSEMT exhibits optimum thermal management performance. Even at 2C discharge rate after ten cycles, the maximum operating temperature of battery module can still be maintained below 50 °C, and the maximum temperature difference is controlled within 4.6 °C. Additionally, it displays an excellent thermal runaway suppression through triggering by multiple heat sources. What's more, the battery with PSEMT can suppress the peak temperature and delay the occurrence time of thermal runaway. Therefore, it can be induced that the battery module with PSEMT can effectively avoid heat accumulation and significantly reduce its thermal safety risk. This study offers a new solution with promising prospects from the perspectives of energy storage and EVs, for balancing the temperature inconsistencies in batteries and suppressing thermal runaway in the battery packs.</p></div>","PeriodicalId":36355,"journal":{"name":"Etransportation","volume":"20 ","pages":"Article 100325"},"PeriodicalIF":11.9,"publicationDate":"2024-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140067405","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Exploring the electrochemical and mechanical properties of lithium-ion batteries in salt spray environments 探索盐雾环境下锂离子电池的电化学和机械特性
IF 11.9 1区 工程技术
Etransportation Pub Date : 2024-03-01 DOI: 10.1016/j.etran.2024.100324
Jiaying Chen , Binqi Li , Jianping Li , You Gao , Zhiwei Hao , Lubing Wang
{"title":"Exploring the electrochemical and mechanical properties of lithium-ion batteries in salt spray environments","authors":"Jiaying Chen ,&nbsp;Binqi Li ,&nbsp;Jianping Li ,&nbsp;You Gao ,&nbsp;Zhiwei Hao ,&nbsp;Lubing Wang","doi":"10.1016/j.etran.2024.100324","DOIUrl":"10.1016/j.etran.2024.100324","url":null,"abstract":"<div><p>With the pressing need to expedite the transition toward a greener marine industry, energy-efficient and eco-friendly lithium-ion batteries (LIBs) are increasingly favored. However, compared to land applications, marine environments pose unique challenges to the utilization of LIBs, thereby necessitating targeted safety measures. In this study, prismatic LIBs (PLIBs) are subjected to standard salt spray tests to emulate marine environments, and the resultant morphological changes and external voltage response of the batteries under the corrosion behavior are analyzed. Subsequently, the impacts of the salt spray environment on the electrochemical performance of PLIBs are assessed through a range of characterization techniques including scanning electron microscopy (SEM), electrochemical impedance spectroscopy (EIS), and charge-discharge test. Finally, quasi-static ball indentation tests are carried out on the corroded batteries to study the behaviors under mechanical abusive loading scenarios. Results reveal that the most prominent effect of the salt spray environment on the batteries is the occurrence of swelling, attributable to the imperfect sealing of the battery tabs. This study represents an innovative exploration of the viability of LIBs in the marine environments, providing fundamental theoretical guidance for early detection of battery corrosion and collision risks, as well as facilitating protective design considerations.</p></div>","PeriodicalId":36355,"journal":{"name":"Etransportation","volume":"20 ","pages":"Article 100324"},"PeriodicalIF":11.9,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140057513","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Multi- forword-step state of charge prediction for real-world electric vehicles battery systems using a novel LSTM-GRU hybrid neural network 使用新型 LSTM-GRU 混合神经网络预测真实世界电动汽车电池系统的多步充电状态
IF 11.9 1区 工程技术
Etransportation Pub Date : 2024-02-29 DOI: 10.1016/j.etran.2024.100322
Jichao Hong , Fengwei Liang , Haixu Yang , Chi Zhang , Xinyang Zhang , Huaqin Zhang , Wei Wang , Kerui Li , Jingsong Yang
{"title":"Multi- forword-step state of charge prediction for real-world electric vehicles battery systems using a novel LSTM-GRU hybrid neural network","authors":"Jichao Hong ,&nbsp;Fengwei Liang ,&nbsp;Haixu Yang ,&nbsp;Chi Zhang ,&nbsp;Xinyang Zhang ,&nbsp;Huaqin Zhang ,&nbsp;Wei Wang ,&nbsp;Kerui Li ,&nbsp;Jingsong Yang","doi":"10.1016/j.etran.2024.100322","DOIUrl":"https://doi.org/10.1016/j.etran.2024.100322","url":null,"abstract":"<div><p>Battery state-of-charge (SOC) is an evaluation metric for the electric vehicles' remaining driving range and one of the main monitoring parameters for battery management systems. However, there are rarely data-driven studies on multi-step prediction of battery SOC, which cannot accurately provide and realize electric vehicle remaining driving range prediction and SOC safety pre-warning. Therefore, this study aims to perform SOC multi-forward-step prediction for real-world vehicle battery system by a novel hybrid long short-term memory and gate recurrent unit (LSTM-GRU) neural network. The paper firstly analyses the characteristics of correlation analysis and adopts similarity metric method to reduce the parameter dimensionality for the input neural network. Then the advantages between LSTM-GRU, LSTM, GRU, and long short-term memory and convolutional neural network (LSTM-CNN) are analyzed by comparing experimental and real-world vehicle data, and the effectiveness and accuracy of the proposed method is demonstrated. In addition, the proposed method robustness is verified by adding noise data to the input parameters. In this study, the prediction results were validated with real-world vehicle data in spring, summer, autumn and winter, and the proposed method achieved a minimum MAPE and MAE of 1.03% and 0.73 for summer conditions, while the minimum standard deviation of prediction was 0.06% for experimental conditions. The research process shows that the method has high accuracy when applied to large data and is expected to be applied to real-world vehicle battery system SOC multi-forward-step prediction in the future.</p></div>","PeriodicalId":36355,"journal":{"name":"Etransportation","volume":"20 ","pages":"Article 100322"},"PeriodicalIF":11.9,"publicationDate":"2024-02-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140030197","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Low voltage grid resilience: Evaluating electric vehicle charging strategies in the context of the grid development plan Germany 低压电网恢复能力:评估电网发展计划背景下的电动汽车充电策略 德国
IF 11.9 1区 工程技术
Etransportation Pub Date : 2024-02-27 DOI: 10.1016/j.etran.2024.100323
Ricardo Reibsch , Jakob Gemassmer , Tabea Katerbau
{"title":"Low voltage grid resilience: Evaluating electric vehicle charging strategies in the context of the grid development plan Germany","authors":"Ricardo Reibsch ,&nbsp;Jakob Gemassmer ,&nbsp;Tabea Katerbau","doi":"10.1016/j.etran.2024.100323","DOIUrl":"10.1016/j.etran.2024.100323","url":null,"abstract":"<div><p>The ongoing transition to decentralized renewable energy sources and sector-coupled consumers is reshaping the energy system. Changes at lower grid levels can stress lines and transformers. Crucial for a successful local energy transition are grid relief measures. Battery electric vehicles contribute to higher loads on grid equipment but also offer flexibility. This paper assesses the influence of four different charging strategies for battery electric vehicles across five representative low-voltage grids based on the grid development plan in Germany for the years 2021, 2037, and 2045. Results indicate that grid stress, specifically capacity stress, will emerge by 2037 and 2045. Decentralized photovoltaic systems are the primary contributors to this stress due to high simultaneous generation. Up to nearly 20<!--> <!-->% of photovoltaic power may need to be curtailed in 2045, especially in rural grids during the summer, to prevent overloads.</p><p>Charging strategies linked to wholesale power market prices can inadvertently lead to higher consumption-induced grid overloads, necessitating the consideration of local grid restrictions. Implementing grid-friendly charging strategies, such as reduced charging power or alignment with local photovoltaic production, can mitigate those grid overloads from almost 8<!--> <!-->% down to 0.11<!--> <!-->%. However, these charging strategies have limited impact on photovoltaic-induced overloads due to the low number of connected battery electric vehicles during the day.</p><p>In summary, appropriate charging strategies can ease low-voltage grid stress and are suitable measures to manage the challenges of decentralized energy transition and battery-electric vehicle adoption.</p></div>","PeriodicalId":36355,"journal":{"name":"Etransportation","volume":"20 ","pages":"Article 100323"},"PeriodicalIF":11.9,"publicationDate":"2024-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2590116824000134/pdfft?md5=be82a6b87cd4c102e71947b7adc55947&pid=1-s2.0-S2590116824000134-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140011361","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Recycling of spent lithium-ion batteries in view of graphite recovery: A review 从石墨回收角度看废锂离子电池的再循环:综述
IF 11.9 1区 工程技术
Etransportation Pub Date : 2024-02-23 DOI: 10.1016/j.etran.2024.100320
Zhen Shang , Wenhao Yu , Jiahui Zhou , Xia Zhou , Zhiyuan Zeng , Rabigul Tursun , Xuegang Liu , Shengming Xu
{"title":"Recycling of spent lithium-ion batteries in view of graphite recovery: A review","authors":"Zhen Shang ,&nbsp;Wenhao Yu ,&nbsp;Jiahui Zhou ,&nbsp;Xia Zhou ,&nbsp;Zhiyuan Zeng ,&nbsp;Rabigul Tursun ,&nbsp;Xuegang Liu ,&nbsp;Shengming Xu","doi":"10.1016/j.etran.2024.100320","DOIUrl":"10.1016/j.etran.2024.100320","url":null,"abstract":"<div><p>Given the exponential increase in the number of lithium-ion batteries (LIBs) used in electric cars and the sizeable quantity of waste produced at the end of their lifespans, efficient recycling of used lithium-ion batteries offers tremendous promise for practical application. While considerable efforts have been devoted to the recycling of cathode materials and other valuable components in spent lithium-ion batteries, sufficient attention has not been directed towards the spent anode graphite. Given the risks associated with limited resource supply and environmental pressure, the regeneration of spent graphite anodes from electric vehicle batteries has become a critical issue. As a preferred option, the direct regeneration strategy has been innovatively proposed to recover targeted graphite materials. To better comprehend this topic, three types of graphite are highlighted and categorized based on the source of the LIBs. Their special features, advantages, and challenges are also summarized and evaluated. More significantly, it is anticipated that the outcomes of this work could emphasize the importance of graphite recycling in the overall recycling of the spent lithium-ion battery industry.</p></div>","PeriodicalId":36355,"journal":{"name":"Etransportation","volume":"20 ","pages":"Article 100320"},"PeriodicalIF":11.9,"publicationDate":"2024-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139966185","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Experimental determinations of thermophysical parameters for lithium-ion batteries: A systematic review 锂离子电池热物理参数的实验测定:系统回顾
IF 11.9 1区 工程技术
Etransportation Pub Date : 2024-02-20 DOI: 10.1016/j.etran.2024.100321
Jinghe Shi , Hengyun Zhang , Hong Yu , Yidong Xu , Shen Xu , Lei Sheng , Xuning Feng , Xiaolin Wang
{"title":"Experimental determinations of thermophysical parameters for lithium-ion batteries: A systematic review","authors":"Jinghe Shi ,&nbsp;Hengyun Zhang ,&nbsp;Hong Yu ,&nbsp;Yidong Xu ,&nbsp;Shen Xu ,&nbsp;Lei Sheng ,&nbsp;Xuning Feng ,&nbsp;Xiaolin Wang","doi":"10.1016/j.etran.2024.100321","DOIUrl":"10.1016/j.etran.2024.100321","url":null,"abstract":"<div><p>Thermophysical parameters, including the specific heat and thermal conductivity of lithium-ion batteries (LIBs), are the key parameters for the design of battery thermal management systems in electric vehicles. The evaluations of internal temperature distribution and even the thermal safety characteristics of the batteries depend highly on these thermophysical parameters under either live operation or repose condition. In this paper, the experimental studies of the specific heat and thermal conductivity of LIBs are reviewed and discussed. This review classifies the experimental studies into ex-situ and in-situ measurements. The ex-situ measurements, based on the dissection of the battery, may differ from realistic scenarios and thus the obtained parameters may not be fully applicable for thermal prediction of practical battery systems. Contrarily, in-situ measurements better represent the realistic characteristics without dismantling the battery, which can be further categorized into weighted average method, heat flow method, dedicated equipment including accelerating rate calorimeter (ARC), calibration calorimeter in insulation, self-made calorimeter method, and so on. Due to the short test time and good size adaptability, unsteady-state in-situ measurement techniques, including the calibration calorimeter and quasi-steady state techniques, are becoming the promising research directions in the future, especially for the simultaneous determination of multiple thermal parameters. The large data scatterings are pointed out based on the existing results, and the underlying mechanisms are scrutinized. To guarantee measurement accuracy, it is indispensable to calibrate the heat loss and benchmark with standard sample tests together with rigorous uncertainty analysis. The thermophysical parameters should be determined under different temperatures, states of charge (SOC) and aging conditions to enable accurate prediction of temperature profiles and degradation for LIBs with ever increasing energy density and safety risk.</p></div>","PeriodicalId":36355,"journal":{"name":"Etransportation","volume":"20 ","pages":"Article 100321"},"PeriodicalIF":11.9,"publicationDate":"2024-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139917744","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Solid electrolyte membranes for all-solid-state rechargeable batteries 用于全固态充电电池的固体电解质膜
IF 11.9 1区 工程技术
Etransportation Pub Date : 2024-02-19 DOI: 10.1016/j.etran.2024.100319
Nini Zhang , Xiaolei Zhao , Gaozhan Liu , Zhe Peng , Jinghua Wu , Mingyang Men , Xiayin Yao
{"title":"Solid electrolyte membranes for all-solid-state rechargeable batteries","authors":"Nini Zhang ,&nbsp;Xiaolei Zhao ,&nbsp;Gaozhan Liu ,&nbsp;Zhe Peng ,&nbsp;Jinghua Wu ,&nbsp;Mingyang Men ,&nbsp;Xiayin Yao","doi":"10.1016/j.etran.2024.100319","DOIUrl":"10.1016/j.etran.2024.100319","url":null,"abstract":"<div><p>All-solid-state lithium batteries employing solid electrolyte instead of organic liquid electrolyte and separator have been regarded as one of the most favorable candidates for next generation energy storage devices due to their unparalleled safety and energy density. Recently, significant progresses have been made on developing suitable solid electrolytes for all-solid-state lithium batteries with high ionic conductivity, wide electrochemical window and favorable electrode compatibility. Nevertheless, owing to the brittle nature of inorganic solid electrolytes and limited mechanic property of solid polymer electrolytes, the typical thickness of solid electrolyte layers is excessively thick, which prevents further enhancing the energy density of all-solid-state rechargeable batteries. In this short review, we summary recent research progresses on solid electrolyte membranes based on wet coating, frame support and dry film methods. In particular, the critical parameters such as thickness, conductivity and mechanical property are discussed in detail. Finally, the future development directions of the solid electrolyte membranes are proposed.</p></div>","PeriodicalId":36355,"journal":{"name":"Etransportation","volume":"20 ","pages":"Article 100319"},"PeriodicalIF":11.9,"publicationDate":"2024-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139917742","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Performance investigation of electric vehicle thermal management system with thermal energy storage and waste heat recovery systems 带有热能储存和余热回收系统的电动汽车热管理系统性能调查
IF 11.9 1区 工程技术
Etransportation Pub Date : 2024-02-09 DOI: 10.1016/j.etran.2024.100317
Jangpyo Hong , Jaeho Song , Ukmin Han , Hyuntae Kim , Hongseok Choi , Hoseong Lee
{"title":"Performance investigation of electric vehicle thermal management system with thermal energy storage and waste heat recovery systems","authors":"Jangpyo Hong ,&nbsp;Jaeho Song ,&nbsp;Ukmin Han ,&nbsp;Hyuntae Kim ,&nbsp;Hongseok Choi ,&nbsp;Hoseong Lee","doi":"10.1016/j.etran.2024.100317","DOIUrl":"https://doi.org/10.1016/j.etran.2024.100317","url":null,"abstract":"<div><p>This study investigates the electric vehicle thermal management system performance, utilizing thermal energy storage and waste heat recovery, in response to the imperative shift toward carbon-free electric vehicles to overcome the challenge of low energy efficiency in the thermal management system. The heat generation according to the electrical load on the battery was calculated based on experimental data. The thermal performances of the cabin, power electronic thermal management, and battery thermal management system were explored under various operating conditions at different ambient temperatures. A fully charged thermal energy storage system, including low- and high-temperature phase change materials and waste heat recovery systems, was applied in summer and winter. The total energy consumption for cooling and heating saved to a maximum of 65.9 % in summer and 26.2 % in winter. The mileage extension rate was calculated by distributing the power demand according to the vehicle exterior and motor performance of the battery. Thus, by directly saving the thermal parasitic electrical energy and using it to extend the driving mileage, the electric vehicle achieved a mileage extension of 24.2 % in summer and 18.6 % in winter.</p></div>","PeriodicalId":36355,"journal":{"name":"Etransportation","volume":"20 ","pages":"Article 100317"},"PeriodicalIF":11.9,"publicationDate":"2024-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139744439","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Sulfonylimide based single lithium-ion conducting polymer electrolytes boosting high-safety and high-energy-density lithium batteries 基于磺酰亚胺的单一锂离子导电聚合物电解质促进高安全性和高能量密度锂电池的发展
IF 11.9 1区 工程技术
Etransportation Pub Date : 2024-02-01 DOI: 10.1016/j.etran.2024.100318
Chaojie Chen , Zulei Li , Xiaofan Du , Qian Zhou , Pengxian Han , Guanglei Cui
{"title":"Sulfonylimide based single lithium-ion conducting polymer electrolytes boosting high-safety and high-energy-density lithium batteries","authors":"Chaojie Chen ,&nbsp;Zulei Li ,&nbsp;Xiaofan Du ,&nbsp;Qian Zhou ,&nbsp;Pengxian Han ,&nbsp;Guanglei Cui","doi":"10.1016/j.etran.2024.100318","DOIUrl":"10.1016/j.etran.2024.100318","url":null,"abstract":"<div><p>Single-ion conducting polymer electrolytes (SICPEs) have received much attention due to their excellent Li<sup>+</sup> transference numbers, which can effectively reduce the concentration gradient and inhibit the growth of lithium dendrites. Recently, sulfonimide based SICPEs with superior ionic conductivity have become the most widely studied SICPEs by virtue of their highly delocalized anions and diverse molecular designability. In this review, the molecular design of sulfonimide based SICPEs is summarized in terms of anionic groups and polymer backbones of SICPEs. Then, the potential influence of SICPEs on battery safety is discussed from electrolyte level and interface level, respectively. It is believed that the battery safety and interface compatibility need to be given sufficient attention for SICPEs, in addition to the ion conductivity and Li<sup>+</sup> transference number. It is hoped that this review can inspire a deeper consideration on SICPEs, which can pave a new pathway for the high-safety and high-energy-density lithium batteries.</p></div>","PeriodicalId":36355,"journal":{"name":"Etransportation","volume":"20 ","pages":"Article 100318"},"PeriodicalIF":11.9,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139669727","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信