G. Sordi , A. Stecchini , R. Evangelista , D. Luder , W. Li , D.U. Sauer , A. Casalegno , C. Rabissi
{"title":"Degradation of lithium-ion batteries under automotive-like conditions: P2D model-based understanding and ex-situ validation","authors":"G. Sordi , A. Stecchini , R. Evangelista , D. Luder , W. Li , D.U. Sauer , A. Casalegno , C. Rabissi","doi":"10.1016/j.etran.2025.100410","DOIUrl":null,"url":null,"abstract":"<div><div>Despite its worldwide commercialisation, the degradation of lithium-ion battery technology is still a hot research topic. Batteries are known to decrease in capacity and increase in internal resistance, but it is quite uncommon to further investigate the performance decay, distinguishing classes of ageing mechanisms (resistive, kinetic and mass-transport) and relating them with the operation. This work exploits the P2D model to understand the performance decay of ageing cells from a physical perspective. A complex experimental campaign combining 13 different automotive-like cycles, applied to commercial battery samples to recreate the degradation of batteries under realistic conditions, is analysed with such methodology. Along the ageing tests, physical models' parameters are periodically identified by means of particle swarm optimisation applied over characterisation tests. Parameter evolution is then correlated with specific degradation mechanisms, related operating conditions and performance decay. A significant decrease in electrolyte conductivity and lithium solid-state diffusivity within the positive electrode are detected, progressively inducing heterogeneous operation and worsening of both efficiency and capacity retention. Particularly, cycle depth appears to promote particle cracking and loss of positive electrode material. Post-mortem analyses are then performed to support the interpretations on degradation mechanisms, confirming the degradation of electrolyte and positive electrode.</div></div>","PeriodicalId":36355,"journal":{"name":"Etransportation","volume":"24 ","pages":"Article 100410"},"PeriodicalIF":15.0000,"publicationDate":"2025-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Etransportation","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590116825000177","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
Despite its worldwide commercialisation, the degradation of lithium-ion battery technology is still a hot research topic. Batteries are known to decrease in capacity and increase in internal resistance, but it is quite uncommon to further investigate the performance decay, distinguishing classes of ageing mechanisms (resistive, kinetic and mass-transport) and relating them with the operation. This work exploits the P2D model to understand the performance decay of ageing cells from a physical perspective. A complex experimental campaign combining 13 different automotive-like cycles, applied to commercial battery samples to recreate the degradation of batteries under realistic conditions, is analysed with such methodology. Along the ageing tests, physical models' parameters are periodically identified by means of particle swarm optimisation applied over characterisation tests. Parameter evolution is then correlated with specific degradation mechanisms, related operating conditions and performance decay. A significant decrease in electrolyte conductivity and lithium solid-state diffusivity within the positive electrode are detected, progressively inducing heterogeneous operation and worsening of both efficiency and capacity retention. Particularly, cycle depth appears to promote particle cracking and loss of positive electrode material. Post-mortem analyses are then performed to support the interpretations on degradation mechanisms, confirming the degradation of electrolyte and positive electrode.
期刊介绍:
eTransportation is a scholarly journal that aims to advance knowledge in the field of electric transportation. It focuses on all modes of transportation that utilize electricity as their primary source of energy, including electric vehicles, trains, ships, and aircraft. The journal covers all stages of research, development, and testing of new technologies, systems, and devices related to electrical transportation.
The journal welcomes the use of simulation and analysis tools at the system, transport, or device level. Its primary emphasis is on the study of the electrical and electronic aspects of transportation systems. However, it also considers research on mechanical parts or subsystems of vehicles if there is a clear interaction with electrical or electronic equipment.
Please note that this journal excludes other aspects such as sociological, political, regulatory, or environmental factors from its scope.