Nami Jishu yu Jingmi Gongcheng/Nanotechnology and Precision Engineering最新文献

筛选
英文 中文
Effect of the orientation of non-spherical metal nanoparticle with respect to light polarization on its transient optical response 非球形金属纳米粒子的取向和光偏振对其瞬态光学响应的影响
IF 3.7 3区 工程技术
Nami Jishu yu Jingmi Gongcheng/Nanotechnology and Precision Engineering Pub Date : 2023-05-08 DOI: 10.1063/10.0017948
Asha Singh, H. Srivastava, R. Chari, J. Jayabalan
{"title":"Effect of the orientation of non-spherical metal nanoparticle with respect to light polarization on its transient optical response","authors":"Asha Singh, H. Srivastava, R. Chari, J. Jayabalan","doi":"10.1063/10.0017948","DOIUrl":"https://doi.org/10.1063/10.0017948","url":null,"abstract":"","PeriodicalId":35428,"journal":{"name":"Nami Jishu yu Jingmi Gongcheng/Nanotechnology and Precision Engineering","volume":" ","pages":""},"PeriodicalIF":3.7,"publicationDate":"2023-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46288527","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Reduction of ice adhesion on nanostructured and nanoscale slippery surfaces 减少纳米结构和纳米级光滑表面上的冰粘附
IF 3.7 3区 工程技术
Nami Jishu yu Jingmi Gongcheng/Nanotechnology and Precision Engineering Pub Date : 2023-03-01 DOI: 10.1063/10.0017254
Luke Haworth, Deyu Yang, P. Agrawal, H. Torun, X. Hou, G. McHale, Yongqing Fu
{"title":"Reduction of ice adhesion on nanostructured and nanoscale slippery surfaces","authors":"Luke Haworth, Deyu Yang, P. Agrawal, H. Torun, X. Hou, G. McHale, Yongqing Fu","doi":"10.1063/10.0017254","DOIUrl":"https://doi.org/10.1063/10.0017254","url":null,"abstract":"Ice nucleation and accretion on structural surfaces are sources of major safety and operational concerns in many industries including aviation and renewable energy. Common methods for tackling these are active ones such as heating, ultrasound, and chemicals or passive ones such as surface coatings. In this study, we explored the ice adhesion properties of slippery coated substrates by measuring the shear forces required to remove a glaze ice block on the coated substrates. Among the studied nanostructured and nanoscale surfaces [i.e., a superhydrophobic coating, a fluoropolymer coating, and a polydimethylsiloxane (PDMS) chain coating], the slippery omniphobic covalently attached liquid (SOCAL) surface with its flexible polymer brushes and liquid-like structure significantly reduced the ice adhesion on both glass and silicon surfaces. Further studies of the SOCAL coating on roughened substrates also demonstrated its low ice adhesion. The reduction in ice adhesion is attributed to the flexible nature of the brush-like structures of PDMS chains, allowing ice to detach easily.","PeriodicalId":35428,"journal":{"name":"Nami Jishu yu Jingmi Gongcheng/Nanotechnology and Precision Engineering","volume":" ","pages":""},"PeriodicalIF":3.7,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42647099","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 5
Improved calibration method for displacement transformation coefficient in optical and visual measurements 改进了光学和视觉测量中位移变换系数的标定方法
IF 3.7 3区 工程技术
Nami Jishu yu Jingmi Gongcheng/Nanotechnology and Precision Engineering Pub Date : 2023-03-01 DOI: 10.1063/10.0016714
Haopeng Li, Z. Qiu
{"title":"Improved calibration method for displacement transformation coefficient in optical and visual measurements","authors":"Haopeng Li, Z. Qiu","doi":"10.1063/10.0016714","DOIUrl":"https://doi.org/10.1063/10.0016714","url":null,"abstract":"Optical and visual measurement technology is used widely in fields that involve geometric measurements, and among such technology are laser and vision-based displacement measuring modules (LVDMMs). The displacement transformation coefficient (DTC) of an LVDMM changes with the coordinates in the camera image coordinate system during the displacement measuring process, and these changes affect the displacement measurement accuracy of LVDMMs in the full field of view (FFOV). To give LVDMMs higher accuracy in the FFOV and make them adaptable to widely varying measurement demands, a new calibration method is proposed to improve the displacement measurement accuracy of LVDMMs in the FFOV. First, an image coordinate system, a pixel measurement coordinate system, and a displacement measurement coordinate system are established on the laser receiving screen of the LVDMM. In addition, marker spots in the FFOV are selected, and the DTCs at the marker spots are obtained from calibration experiments. Also, a fitting method based on locally weighted scatterplot smoothing (LOWESS) is selected, and with this fitting method the distribution functions of the DTCs in the FFOV are obtained based on the DTCs at the marker spots. Finally, the calibrated distribution functions of the DTCs are applied to the LVDMM, and experiments conducted to verify the displacement measurement accuracies are reported. The results show that the FFOV measurement accuracies for horizontal and vertical displacements are better than ±15 µm and ±19 µm, respectively, and that for oblique displacement is better than ±24 µm. Compared with the traditional calibration method, the displacement measurement error in the FFOV is now 90% smaller. This research on an improved calibration method has certain significance for improving the measurement accuracy of LVDMMs in the FFOV, and it provides a new method and idea for other vision-based fields in which camera parameters must be calibrated.","PeriodicalId":35428,"journal":{"name":"Nami Jishu yu Jingmi Gongcheng/Nanotechnology and Precision Engineering","volume":" ","pages":""},"PeriodicalIF":3.7,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45556666","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Pick-up strategies for and electrical characterization of ZnO nanowires with a SEM-based nanomanipulator 基于扫描电镜的ZnO纳米线拾取策略及电学表征
IF 3.7 3区 工程技术
Nami Jishu yu Jingmi Gongcheng/Nanotechnology and Precision Engineering Pub Date : 2023-03-01 DOI: 10.1063/10.0016877
Mei Liu, Lingdi Kong, Weilin Su, Aristide Djoulde, K. Cheng, Jinbo Chen, Jinjun Rao, Zhiming M. Wang
{"title":"Pick-up strategies for and electrical characterization of ZnO nanowires with a SEM-based nanomanipulator","authors":"Mei Liu, Lingdi Kong, Weilin Su, Aristide Djoulde, K. Cheng, Jinbo Chen, Jinjun Rao, Zhiming M. Wang","doi":"10.1063/10.0016877","DOIUrl":"https://doi.org/10.1063/10.0016877","url":null,"abstract":"Because of their unique mechanical and electrical properties, zinc oxide (ZnO) nanowires are used widely in microscopic and nanoscopic devices and structures, but characterizing them remains challenging. In this paper, two pick-up strategies are proposed for characterizing the electrical properties of ZnO nanowires using SEM equipped with a nanomanipulator. To pick up nanowires efficiently, direct sampling is compared with electrification fusing, and experiments show that direct sampling is more stable while electrification fusing is more efficient. ZnO nanowires have cut-off properties, and good Schottky contact with the tungsten probes was established. In piezoelectric experiments, the maximum piezoelectric voltage generated by an individual ZnO nanowire was 0.07 V, and its impedance decreased with increasing input signal frequency until it became stable. This work offers a technical reference for the pick-up and construction of nanomaterials and nanogeneration technology.","PeriodicalId":35428,"journal":{"name":"Nami Jishu yu Jingmi Gongcheng/Nanotechnology and Precision Engineering","volume":" ","pages":""},"PeriodicalIF":3.7,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46166191","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Portable FBAR based E-nose for cold chain real-time bananas shelf time detection 基于FBAR的便携式电子鼻冷链香蕉货架时间实时检测
IF 3.7 3区 工程技术
Nami Jishu yu Jingmi Gongcheng/Nanotechnology and Precision Engineering Pub Date : 2023-03-01 DOI: 10.1063/10.0016870
Chen Wu, Jiuyan Li
{"title":"Portable FBAR based E-nose for cold chain real-time bananas shelf time detection","authors":"Chen Wu, Jiuyan Li","doi":"10.1063/10.0016870","DOIUrl":"https://doi.org/10.1063/10.0016870","url":null,"abstract":"Being cheap, nondestructive, and easy to use, gas sensors play important roles in the food industry. However, most gas sensors are suitable more for laboratory-quality fast testing rather than for cold-chain continuous and cumulative testing. Also, an ideal electronic nose (E-nose) in a cold chain should be stable to its surroundings and remain highly accurate and portable. In this work, a portable film bulk acoustic resonator (FBAR)-based E-nose was built for real-time measurement of banana shelf time. The sensor chamber to contain the portable circuit of the E-nose is as small as a smartphone, and by introducing an air-tight FBAR as a reference, the E-nose can avoid most of the drift caused by surroundings. With the help of porous layer by layer (LBL) coating of the FBAR, the sensitivity of the E-nose is 5 ppm to ethylene and 0.5 ppm to isoamyl acetate and isoamyl butyrate, while the detection range is large enough to cover a relative humidity of 0.8. In this regard, the E-nose can easily discriminate between yellow bananas with green necks and entirely yellow bananas while allowing the bananas to maintain their biological activities in their normal storage state, thereby showing the possibility of real-time shelf time detection. This portable FBAR-based E-nose has a large testing scale, high sensitivity, good humidity tolerance, and low frequency drift to its surroundings, thereby meeting the needs of cold-chain usage.","PeriodicalId":35428,"journal":{"name":"Nami Jishu yu Jingmi Gongcheng/Nanotechnology and Precision Engineering","volume":" ","pages":""},"PeriodicalIF":3.7,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48822478","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Direct fabrication of flexible tensile sensors enabled by polariton energy transfer based on graphene nanosheet films 基于石墨烯纳米片薄膜的极化子能量转移柔性张力传感器的直接制造
IF 3.7 3区 工程技术
Nami Jishu yu Jingmi Gongcheng/Nanotechnology and Precision Engineering Pub Date : 2023-03-01 DOI: 10.1063/10.0016758
Xi Zhang, Junchi Ma, Wenhao Huang, Jichen Zhang, Chaoyang Lyu, Yu Zhang, Bo Wen, X. Wang, Jing Ye, Dong-feng Diao
{"title":"Direct fabrication of flexible tensile sensors enabled by polariton energy transfer based on graphene nanosheet films","authors":"Xi Zhang, Junchi Ma, Wenhao Huang, Jichen Zhang, Chaoyang Lyu, Yu Zhang, Bo Wen, X. Wang, Jing Ye, Dong-feng Diao","doi":"10.1063/10.0016758","DOIUrl":"https://doi.org/10.1063/10.0016758","url":null,"abstract":"A fundamental problem in the direct manufacturing of flexible devices is the low melting temperature of flexible substrates, which hinders the development of flexible electronics. Proposed here is an electron-cyclotron-resonance sputtering system that can batch-fabricate devices directly on flexible substrates under a low temperature by virtue of the polariton energy transfer between the plasma and the material. Flexible graphene nanosheet-embedded carbon (F-GNEC) films are manufactured directly on polyimide, polyethylene terephthalate, and polydimethylsiloxane, and how the substrate bias (electron energy), microwave power (plasma flux and energy), and magnetic field (electron flux) affect the nanostructure of the F-GNEC films is investigated, indicating that electron energy and flux contribute to the formation of standing graphene nanosheets in the film. The films have good uniformity of distribution in a large size (17 mm × 17 mm), and tensile and angle sensors with a high gauge factor (0.92) and fast response (50 ms) for a machine hand are obtained by virtue of the unique nanostructure of the F-GNEC film. This work sheds light on the quantum manufacturing of carbon sensors and its applications for intelligent machine hands and virtual-reality technology.","PeriodicalId":35428,"journal":{"name":"Nami Jishu yu Jingmi Gongcheng/Nanotechnology and Precision Engineering","volume":" ","pages":""},"PeriodicalIF":3.7,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44634480","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Design and fabrication of a series contact RF MEMS switch with a novel top electrode 一种新型顶电极串联触点RF MEMS开关的设计与制造
IF 3.7 3区 工程技术
Nami Jishu yu Jingmi Gongcheng/Nanotechnology and Precision Engineering Pub Date : 2023-03-01 DOI: 10.1063/10.0016903
Qiannan Wu, Honglei Guo, Qiuhui Liu, Guangzhou Zhu, Junqiang Wang, Yonghong Cao, Mengwei Li
{"title":"Design and fabrication of a series contact RF MEMS switch with a novel top electrode","authors":"Qiannan Wu, Honglei Guo, Qiuhui Liu, Guangzhou Zhu, Junqiang Wang, Yonghong Cao, Mengwei Li","doi":"10.1063/10.0016903","DOIUrl":"https://doi.org/10.1063/10.0016903","url":null,"abstract":"Radio-frequency (RF) micro-electro-mechanical-system (MEMS) switches are widely used in communication devices and test instruments. In this paper, we demonstrate the structural design and optimization of a novel RF MEMS switch with a straight top electrode. The insertion loss, isolation, actuator voltage, and stress distribution of the switch are optimized and explored simultaneously by HFSS and COMSOL software, taking into account both its RF and mechanical properties. Based on the optimized results, a switch was fabricated by a micromachining process compatible with conventional IC processes. The RF performance in the DC to 18 GHz range was measured with a vector network analyzer, showing isolation of more than 21.28 dB over the entire operating frequency range. Moreover, the required actuation voltage was about 9.9 V, and the switching time was approximately 33 μs. A maximum lifetime of 109 switching cycles was obtained. Additionally, the dimension of the sample is 1.8 mm × 1.8 mm × 0.3 mm, which might find application in the current stage.","PeriodicalId":35428,"journal":{"name":"Nami Jishu yu Jingmi Gongcheng/Nanotechnology and Precision Engineering","volume":" ","pages":""},"PeriodicalIF":3.7,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44724578","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Three-dimensional acoustic radiation force of a eukaryotic cell arbitrarily positioned in a Gaussian beam 高斯光束中任意位置真核细胞的三维声辐射力
IF 3.7 3区 工程技术
Nami Jishu yu Jingmi Gongcheng/Nanotechnology and Precision Engineering Pub Date : 2023-03-01 DOI: 10.1063/10.0016831
Shuyuan Li, Xiaofeng Zhang
{"title":"Three-dimensional acoustic radiation force of a eukaryotic cell arbitrarily positioned in a Gaussian beam","authors":"Shuyuan Li, Xiaofeng Zhang","doi":"10.1063/10.0016831","DOIUrl":"https://doi.org/10.1063/10.0016831","url":null,"abstract":"Expressions are derived for calculating the three-dimensional acoustic radiation force (ARF) on a multilayer microsphere positioned arbitrarily in a Gaussian beam. A theoretical model of a three-layer microsphere with a cell membrane, cytoplasm, and nucleus is established to study how particle geometry and position affect the three-dimensional ARF, and its results agree well with finite-element numerical results. The microsphere can be moved relative to the beam axis by changing its structure and position in the beam, and the axial ARF increases with increasing outer-shell thickness and core size. This study offers a theoretical foundation for selecting suitable parameters for manipulating a three-layer microsphere in a Gaussian beam.","PeriodicalId":35428,"journal":{"name":"Nami Jishu yu Jingmi Gongcheng/Nanotechnology and Precision Engineering","volume":" ","pages":""},"PeriodicalIF":3.7,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47787941","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Controllable blood–brain barrier (BBB) regulation based on gigahertz acoustic streaming 基于千兆赫声流的可控血脑屏障(BBB)调节
IF 3.7 3区 工程技术
Nami Jishu yu Jingmi Gongcheng/Nanotechnology and Precision Engineering Pub Date : 2022-12-01 DOI: 10.1063/10.0014861
Hang Qi, ShuaiHua Zhang, Jiaxue Liang, Shan He, Yanyan Wang
{"title":"Controllable blood–brain barrier (BBB) regulation based on gigahertz acoustic streaming","authors":"Hang Qi, ShuaiHua Zhang, Jiaxue Liang, Shan He, Yanyan Wang","doi":"10.1063/10.0014861","DOIUrl":"https://doi.org/10.1063/10.0014861","url":null,"abstract":"The blood–brain barrier (BBB) is a structural and functional barrier necessary for brain homeostasis, and it plays an important role in the realization of neural function and in protecting the brain from damage by circulating toxins and pathogens. However, the extremely dense BBB also severely limits the transport of molecules across it, which is a great hindrance to the diagnosis and treatment of central nervous system (CNS) diseases. This paper reports a new method for controllable opening of the BBB, based on the gigahertz acoustic streaming (AS) generated by a bulk acoustic wave resonant device. By adjusting the input power and working distance of the device, AS with tunable flow rate can be generated to disrupt tight junction proteins (TJs) between endothelial cells. The results obtained with this method show that the gigahertz AS promotes the penetration of dextran molecules with different molecular weights across the BBB. This work provides a new platform for studying the mechanical regulation of BBB by fluid shear forces and a new method for improving the efficiency of drug delivery.","PeriodicalId":35428,"journal":{"name":"Nami Jishu yu Jingmi Gongcheng/Nanotechnology and Precision Engineering","volume":" ","pages":""},"PeriodicalIF":3.7,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47887202","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Multi-temperature modeling of femtosecond laser pulse on metallic nanoparticles accounting for the temperature dependences of the parameters 考虑参数温度依赖性的飞秒激光脉冲在金属纳米粒子上的多温度建模
IF 3.7 3区 工程技术
Nami Jishu yu Jingmi Gongcheng/Nanotechnology and Precision Engineering Pub Date : 2022-12-01 DOI: 10.1063/10.0013776
V. Pustovalov
{"title":"Multi-temperature modeling of femtosecond laser pulse on metallic nanoparticles accounting for the temperature dependences of the parameters","authors":"V. Pustovalov","doi":"10.1063/10.0013776","DOIUrl":"https://doi.org/10.1063/10.0013776","url":null,"abstract":"This review considers the fundamental dynamical processes of metal nanoparticles during and after the impact of a femtosecond laser pulse on a nanoparticle, including the absorption of photons. Understanding the sequence of events after photon absorption and their timescales is important for many applications of nanoparticles. Various processes are discussed, starting with optical absorption by electrons, proceeding through the relaxation of the electrons due to electron–electron scattering and electron–phonon coupling, and ending with the dissipation of the nanoparticle energy into the environment. The goal is to consider the timescales, values, and temperature dependences of the electron heat capacity and the electron–phonon coupling parameter that describe these processes and how these dependences affect the electron energy relaxation. Two- and four-temperature models for describing electron–phonon relaxation are discussed. Significant emphasis is paid to the proposed analytical approach to modeling processes during the action of a femtosecond laser pulse on a metal nanoparticle. These consider the temperature dependences of the electron heat capacity and the electron–phonon coupling factor of the metal. The entire process is divided into four stages: (1) the heating of the electron system by a pulse, (2) electron thermalization, (3) electron–phonon energy exchange and the equalization of the temperature of the electrons with the lattice, and (4) cooling of the nanoparticle. There is an appropriate analytical description of each stage. The four-temperature model can estimate the parameters of the laser and nanoparticles needed for applications of femtosecond laser pulses and nanoparticles.","PeriodicalId":35428,"journal":{"name":"Nami Jishu yu Jingmi Gongcheng/Nanotechnology and Precision Engineering","volume":"1 1","pages":""},"PeriodicalIF":3.7,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42449644","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信