Mei Liu, Lingdi Kong, Weilin Su, Aristide Djoulde, K. Cheng, Jinbo Chen, Jinjun Rao, Zhiming M. Wang
{"title":"基于扫描电镜的ZnO纳米线拾取策略及电学表征","authors":"Mei Liu, Lingdi Kong, Weilin Su, Aristide Djoulde, K. Cheng, Jinbo Chen, Jinjun Rao, Zhiming M. Wang","doi":"10.1063/10.0016877","DOIUrl":null,"url":null,"abstract":"Because of their unique mechanical and electrical properties, zinc oxide (ZnO) nanowires are used widely in microscopic and nanoscopic devices and structures, but characterizing them remains challenging. In this paper, two pick-up strategies are proposed for characterizing the electrical properties of ZnO nanowires using SEM equipped with a nanomanipulator. To pick up nanowires efficiently, direct sampling is compared with electrification fusing, and experiments show that direct sampling is more stable while electrification fusing is more efficient. ZnO nanowires have cut-off properties, and good Schottky contact with the tungsten probes was established. In piezoelectric experiments, the maximum piezoelectric voltage generated by an individual ZnO nanowire was 0.07 V, and its impedance decreased with increasing input signal frequency until it became stable. This work offers a technical reference for the pick-up and construction of nanomaterials and nanogeneration technology.","PeriodicalId":35428,"journal":{"name":"Nami Jishu yu Jingmi Gongcheng/Nanotechnology and Precision Engineering","volume":" ","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Pick-up strategies for and electrical characterization of ZnO nanowires with a SEM-based nanomanipulator\",\"authors\":\"Mei Liu, Lingdi Kong, Weilin Su, Aristide Djoulde, K. Cheng, Jinbo Chen, Jinjun Rao, Zhiming M. Wang\",\"doi\":\"10.1063/10.0016877\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Because of their unique mechanical and electrical properties, zinc oxide (ZnO) nanowires are used widely in microscopic and nanoscopic devices and structures, but characterizing them remains challenging. In this paper, two pick-up strategies are proposed for characterizing the electrical properties of ZnO nanowires using SEM equipped with a nanomanipulator. To pick up nanowires efficiently, direct sampling is compared with electrification fusing, and experiments show that direct sampling is more stable while electrification fusing is more efficient. ZnO nanowires have cut-off properties, and good Schottky contact with the tungsten probes was established. In piezoelectric experiments, the maximum piezoelectric voltage generated by an individual ZnO nanowire was 0.07 V, and its impedance decreased with increasing input signal frequency until it became stable. This work offers a technical reference for the pick-up and construction of nanomaterials and nanogeneration technology.\",\"PeriodicalId\":35428,\"journal\":{\"name\":\"Nami Jishu yu Jingmi Gongcheng/Nanotechnology and Precision Engineering\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2023-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nami Jishu yu Jingmi Gongcheng/Nanotechnology and Precision Engineering\",\"FirstCategoryId\":\"1087\",\"ListUrlMain\":\"https://doi.org/10.1063/10.0016877\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nami Jishu yu Jingmi Gongcheng/Nanotechnology and Precision Engineering","FirstCategoryId":"1087","ListUrlMain":"https://doi.org/10.1063/10.0016877","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Pick-up strategies for and electrical characterization of ZnO nanowires with a SEM-based nanomanipulator
Because of their unique mechanical and electrical properties, zinc oxide (ZnO) nanowires are used widely in microscopic and nanoscopic devices and structures, but characterizing them remains challenging. In this paper, two pick-up strategies are proposed for characterizing the electrical properties of ZnO nanowires using SEM equipped with a nanomanipulator. To pick up nanowires efficiently, direct sampling is compared with electrification fusing, and experiments show that direct sampling is more stable while electrification fusing is more efficient. ZnO nanowires have cut-off properties, and good Schottky contact with the tungsten probes was established. In piezoelectric experiments, the maximum piezoelectric voltage generated by an individual ZnO nanowire was 0.07 V, and its impedance decreased with increasing input signal frequency until it became stable. This work offers a technical reference for the pick-up and construction of nanomaterials and nanogeneration technology.