Xi Zhang, Junchi Ma, Wenhao Huang, Jichen Zhang, Chaoyang Lyu, Yu Zhang, Bo Wen, X. Wang, Jing Ye, Dong-feng Diao
{"title":"Direct fabrication of flexible tensile sensors enabled by polariton energy transfer based on graphene nanosheet films","authors":"Xi Zhang, Junchi Ma, Wenhao Huang, Jichen Zhang, Chaoyang Lyu, Yu Zhang, Bo Wen, X. Wang, Jing Ye, Dong-feng Diao","doi":"10.1063/10.0016758","DOIUrl":null,"url":null,"abstract":"A fundamental problem in the direct manufacturing of flexible devices is the low melting temperature of flexible substrates, which hinders the development of flexible electronics. Proposed here is an electron-cyclotron-resonance sputtering system that can batch-fabricate devices directly on flexible substrates under a low temperature by virtue of the polariton energy transfer between the plasma and the material. Flexible graphene nanosheet-embedded carbon (F-GNEC) films are manufactured directly on polyimide, polyethylene terephthalate, and polydimethylsiloxane, and how the substrate bias (electron energy), microwave power (plasma flux and energy), and magnetic field (electron flux) affect the nanostructure of the F-GNEC films is investigated, indicating that electron energy and flux contribute to the formation of standing graphene nanosheets in the film. The films have good uniformity of distribution in a large size (17 mm × 17 mm), and tensile and angle sensors with a high gauge factor (0.92) and fast response (50 ms) for a machine hand are obtained by virtue of the unique nanostructure of the F-GNEC film. This work sheds light on the quantum manufacturing of carbon sensors and its applications for intelligent machine hands and virtual-reality technology.","PeriodicalId":35428,"journal":{"name":"Nami Jishu yu Jingmi Gongcheng/Nanotechnology and Precision Engineering","volume":" ","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nami Jishu yu Jingmi Gongcheng/Nanotechnology and Precision Engineering","FirstCategoryId":"1087","ListUrlMain":"https://doi.org/10.1063/10.0016758","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 2
Abstract
A fundamental problem in the direct manufacturing of flexible devices is the low melting temperature of flexible substrates, which hinders the development of flexible electronics. Proposed here is an electron-cyclotron-resonance sputtering system that can batch-fabricate devices directly on flexible substrates under a low temperature by virtue of the polariton energy transfer between the plasma and the material. Flexible graphene nanosheet-embedded carbon (F-GNEC) films are manufactured directly on polyimide, polyethylene terephthalate, and polydimethylsiloxane, and how the substrate bias (electron energy), microwave power (plasma flux and energy), and magnetic field (electron flux) affect the nanostructure of the F-GNEC films is investigated, indicating that electron energy and flux contribute to the formation of standing graphene nanosheets in the film. The films have good uniformity of distribution in a large size (17 mm × 17 mm), and tensile and angle sensors with a high gauge factor (0.92) and fast response (50 ms) for a machine hand are obtained by virtue of the unique nanostructure of the F-GNEC film. This work sheds light on the quantum manufacturing of carbon sensors and its applications for intelligent machine hands and virtual-reality technology.