{"title":"Three-dimensional acoustic radiation force of a eukaryotic cell arbitrarily positioned in a Gaussian beam","authors":"Shuyuan Li, Xiaofeng Zhang","doi":"10.1063/10.0016831","DOIUrl":null,"url":null,"abstract":"Expressions are derived for calculating the three-dimensional acoustic radiation force (ARF) on a multilayer microsphere positioned arbitrarily in a Gaussian beam. A theoretical model of a three-layer microsphere with a cell membrane, cytoplasm, and nucleus is established to study how particle geometry and position affect the three-dimensional ARF, and its results agree well with finite-element numerical results. The microsphere can be moved relative to the beam axis by changing its structure and position in the beam, and the axial ARF increases with increasing outer-shell thickness and core size. This study offers a theoretical foundation for selecting suitable parameters for manipulating a three-layer microsphere in a Gaussian beam.","PeriodicalId":35428,"journal":{"name":"Nami Jishu yu Jingmi Gongcheng/Nanotechnology and Precision Engineering","volume":" ","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nami Jishu yu Jingmi Gongcheng/Nanotechnology and Precision Engineering","FirstCategoryId":"1087","ListUrlMain":"https://doi.org/10.1063/10.0016831","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 2
Abstract
Expressions are derived for calculating the three-dimensional acoustic radiation force (ARF) on a multilayer microsphere positioned arbitrarily in a Gaussian beam. A theoretical model of a three-layer microsphere with a cell membrane, cytoplasm, and nucleus is established to study how particle geometry and position affect the three-dimensional ARF, and its results agree well with finite-element numerical results. The microsphere can be moved relative to the beam axis by changing its structure and position in the beam, and the axial ARF increases with increasing outer-shell thickness and core size. This study offers a theoretical foundation for selecting suitable parameters for manipulating a three-layer microsphere in a Gaussian beam.