Wen Yu, Hengying Xiang, Jianing Yue, Xiaofan Feng, Wenwen Duan, Yang Feng, Bowen Cheng, Nanping Deng, Weimin Kang
{"title":"The multi-scale dissipation mechanism of composite solid electrolyte based on nanofiber elastomer for all-solid-state lithium metal batteries.","authors":"Wen Yu, Hengying Xiang, Jianing Yue, Xiaofan Feng, Wenwen Duan, Yang Feng, Bowen Cheng, Nanping Deng, Weimin Kang","doi":"10.1016/j.jcis.2024.12.042","DOIUrl":"https://doi.org/10.1016/j.jcis.2024.12.042","url":null,"abstract":"<p><p>Developing next generation batteries necessitates a paradigm shift in the way to engineering solutions for materials challenges. In comparison to traditional organic liquid batteries, all-solid-state batteries exhibit some significant advantages such as high safety and energy density, yet solid electrolytes face challenges in responding dimensional changes of electrodes driven by mass transport. Herein, the critical mechanical parameters affecting battery cycling duration are evaluated based on Spearman rank correlation coefficient, decoupling them into strength, ductility, stiffness, toughness, elasticity, etc. Inspired by the statistical results to apply the materials with stress-relief mechanisms, we propose an elastic solid electrolyte based on the multi-scale mechanical dissipation mechanism. The Li<sub>6.4</sub>La<sub>3</sub>Zr<sub>1.4</sub>Ta<sub>0.6</sub>O<sub>12</sub>/thermoplastic polyurethanes curled fibrous framework is designed and prepared by side-by-side electrospinning technique, serving as elastic source and ion-transport pathways for the composite with poly(ethylene oxide) matrix. Dominated sequentially by electrolyte deformation, network orientation, extendable fibers and molecular chain unfolding, the prepared elastic electrolyte exhibits excellent resilience, compression and puncture resistance. Meanwhile, the curled fast ion conductor fibers can also provide the transport pathways along the component of transmembrane direction, endowing the composite electrolyte with an ionic conductivity of 1.46 × 10<sup>-4</sup> S cm<sup>-1</sup> at 30 °C. A low capacity decay of 0.011 % per cycle at 2 C in assembled LiFePO<sub>4</sub>/Li battery and an excellent lifespan of 1000 cycles at 50 °C in LiNi<sub>0.8</sub>Mn<sub>0.1</sub>Co<sub>0.1</sub>O<sub>2</sub>/Li battery can be achieved. The elastic electrolyte system presents a promising strategy for enabling stable operation of high-energy all-solid-state lithium batteries.</p>","PeriodicalId":351,"journal":{"name":"Journal of Colloid and Interface Science","volume":"682 ","pages":"1073-1084"},"PeriodicalIF":9.4,"publicationDate":"2024-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142811513","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yamin Feng, Weifeng Liu, Haineng Bai, Yan Zhang, Yunxiao Du, Yongqiang Liu, Long Zhang
{"title":"High-performance aqueous zinc-ion hybrid micro-supercapacitors enabled by oxygen-rich functionalised MXene nanofibres.","authors":"Yamin Feng, Weifeng Liu, Haineng Bai, Yan Zhang, Yunxiao Du, Yongqiang Liu, Long Zhang","doi":"10.1016/j.jcis.2024.12.038","DOIUrl":"https://doi.org/10.1016/j.jcis.2024.12.038","url":null,"abstract":"<p><p>Aqueous zinc-ion hybrid micro-supercapacitors (AZIHMSCs) with high power density, moderate energy density, good cycle life and excellent safety are promising candidates for micro-energy storage. Among them, AZIHMSCs based on Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub> MXene anodes and battery-type cathodes can provide superior performance. However, two-dimensional (2D) Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub> MXene electrodes have an inherent restacking issue and -F surface terminations that hinder ion diffusion and ultimately reduce the energy storage capacity of the corresponding AZIHMSCs. Herein, a deep alkalisation strategy was developed to synthesise oxygen-rich, functionalised MXene (O-MXene) nanofibres to solve these problems. Compared with the traditional 2D few-layered Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub> MXene electrode, O-MXene electrodes exhibit an interconnected, three-dimensional (3D) microstructure and ample oxygen functional groups, enhancing Zn<sup>2+</sup> affinity and improving capacitance and rate performance. First-principles calculations further reveal the enhanced interactions between O-MXene electrodes and Zn<sup>2+</sup> supported by atomic interaction, electronic behaviour and orbital hybridization. The AZIHMSCs fabricated with an O-MXene film anode and a MnO<sub>2</sub>-multiwalled carbon nanotubes (MnO<sub>2</sub>-MWCNTs) film cathode exhibit excellent energy density (130.6 μWh cm<sup>-2</sup>), power density (9.5 mW cm<sup>-2</sup>), cycling stability (93.29 % after 5000 cycles) and flexibility (98.43 % capacitance retained at 120° bending). This study will open new avenues for modifying MXene materials and next-generation high-performance AZIHMSCs.</p>","PeriodicalId":351,"journal":{"name":"Journal of Colloid and Interface Science","volume":"682 ","pages":"1085-1093"},"PeriodicalIF":9.4,"publicationDate":"2024-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142816918","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Lasse S Krog, Shinji Kihara, Pablo Mota-Santiago, Vito Foderà, Kārlis Bērziņš, Ben J Boyd
{"title":"Low-frequency Raman spectroscopy as a new tool for understanding the behaviour of ionisable compounds in dispersed mesophases.","authors":"Lasse S Krog, Shinji Kihara, Pablo Mota-Santiago, Vito Foderà, Kārlis Bērziņš, Ben J Boyd","doi":"10.1016/j.jcis.2024.12.032","DOIUrl":"https://doi.org/10.1016/j.jcis.2024.12.032","url":null,"abstract":"<p><strong>Hypothesis: </strong>Low-frequency Raman (LFR) spectroscopy is proposed as a novel non-destructive methodology to probe pH-related phase transitions in self-assembled lipid particles. In this case, dispersed lipid mesophases were composed of ionisable oleic acid (OA) or nicergoline (NG) in monoolein (MO). The sensitivity of LFR spectroscopy to low-energy intermolecular vibrations was hypothesised to be due to structural transformation in ionisable dispersed mesophases upon changes in pH.</p><p><strong>Method/experiment: </strong>Phase transitions of dispersed mesophases of MO mixed with OA or NG were induced by varying the pH of the aqueous buffer. The structural transformations were studied using LFR spectroscopy, recording the corresponding changes in the vibrational density of states (VDOS) upon changes in pH and analysed using principal component analysis (PCA). The results were correlated with structural transitions observed in simultaneous small-angle X-ray scattering (SAXS) measurements.</p><p><strong>Findings: </strong>The intensity of the VDOS signal of MO + OA mesophases scaled with phase-specific transformations, such as from the bi-continuous cubic Im3¯m phase (V<sub>2</sub>) or lamellar-based vesicles to the reversed hexagonal p6m phase (H<sub>2</sub>). For NG subtle changes in the lattice parameter of the V<sub>2</sub> phase of NG + MO mesophases coincided with the apparent dissociation constant (pK<sub>a</sub><sup>app</sup>) of NG, however, slight variations between the pK<sub>a</sub><sup>app</sup> of NG determined by equilibrated samples analysed using SAXS and non-equilibrated samples analysed using LFR suggest structural hysteresis upon changes in the protonation state of NG. This approach offers an efficient method for studying the phase behaviour of lipid systems under varying pH and potentially other conditions such as temperature.</p>","PeriodicalId":351,"journal":{"name":"Journal of Colloid and Interface Science","volume":"683 Pt 1","pages":"210-220"},"PeriodicalIF":9.4,"publicationDate":"2024-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142823573","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yali Wang, Ruihui Gan, Xiaodong Shao, Binting Dai, Lin Ma, Jinzheng Yang, Jingli Shi, Xiangwu Zhang, Chang Ma, Zhanshuang Jin
{"title":"Co/CoO hetero-nanoparticles incorporated into lignin-derived carbon nanofibers as a self-supported bifunctional oxygen electrocatalyst for rechargeable Zn-air batteries.","authors":"Yali Wang, Ruihui Gan, Xiaodong Shao, Binting Dai, Lin Ma, Jinzheng Yang, Jingli Shi, Xiangwu Zhang, Chang Ma, Zhanshuang Jin","doi":"10.1016/j.jcis.2024.12.035","DOIUrl":"https://doi.org/10.1016/j.jcis.2024.12.035","url":null,"abstract":"<p><p>The large-scale application of rechargeable Zn-air batteries (ZABs) necessitates the development of high-efficiency and cost-effective bifunctional electrocatalysts for oxygen reduction reaction (ORR) and oxygen evolution reaction (OER). Herein, the density functional theory calculations were performed to reveal the charge redistribution induced by the Co/CoO heterojunction integrating with N-doped carbon, which could optimize the d-band center, thereby accelerating O<sub>2</sub> transformed into OOH* in the ORR and the conversion of O* into OOH* in OER. Guided by theoretical calculations, Co/CoO hetero-nanoparticles-decorated lignin-derived N-doped porous carbon nanofibers (Co-LCFs-800) were synthesized to use as an advanced self-supported bifunctional oxygen electrocatalyst. Consequently, Co-LCFs-800 shows a half-wave potential of 0.834 V in ORR and an overpotential of 354 mV at 10 mA cm<sup>-2</sup> in OER. The Co-LCFs-800-based liquid ZABs afford an admirable performance with a large specific capacity of 780.8 mAh g<sup>-1</sup>, and the Co-LCFs-800-based solid-state ZABs exhibit satisfactory mechanical flexibility and cycling stability. The results suggest that the integration of hetero-nanoparticles into carbon nanofibers holds promise for oxygen cathode in ZABs.</p>","PeriodicalId":351,"journal":{"name":"Journal of Colloid and Interface Science","volume":"682 ","pages":"934-945"},"PeriodicalIF":9.4,"publicationDate":"2024-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142805687","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
He Zhang, Zhihui Ma, Zhen Wang, Yong Liu, Fanxin Lin, Guodong Miao, Aimin Ju, Xuanhui Qu, Ping Li
{"title":"Tuning of Zr content in TiMn<sub>2</sub> based multinary alloys by powder metallurgy to fabricate superior hydrogen storage properties.","authors":"He Zhang, Zhihui Ma, Zhen Wang, Yong Liu, Fanxin Lin, Guodong Miao, Aimin Ju, Xuanhui Qu, Ping Li","doi":"10.1016/j.jcis.2024.12.043","DOIUrl":"https://doi.org/10.1016/j.jcis.2024.12.043","url":null,"abstract":"<p><p>TiMn<sub>2</sub> based multinary alloys make full use of the high abundance of rare earth resources in attractive applications of hydrogen storage but suffer from mediocre hydrogen ab/desorption kinetics and lack the in-depth mechanism analysis of hydrogenation/dehydrogenation behavior. Herein, on the basis of current research on compositional modulation, we utilize the low-cost powder metallurgy method to prepare Ti<sub>0.9+x</sub>Zr<sub>0.1-x</sub>Mn<sub>1.4</sub>Cr<sub>0.4</sub>V<sub>0.2</sub> (x = -0.05, 0, 0.05) hydrogen storage alloy powders, which effectively reduces the preparation cost. What's more, the fractional substitution of Zr for Ti boosts the hydrogenation by introducing defects and modulating the d-band center. The synthesized Ti<sub>0.85</sub>Zr<sub>0.15</sub>Mn<sub>1.4</sub>Cr<sub>0.4</sub>V<sub>0.2</sub> hydrogen storage sample manifests exceptional hydrogen kinetics (almost no incubation) and hydrogen storage capacity (1.73 wt%). The intrinsic reaction mechanism of Zr substitution is elucidated from the viewpoint of microstructure and strain engineering, combined with density functional theory (DFT) analysis. This study provides valuable insights into the design and application of high-performance TiMn<sub>2</sub> based multinary hydrogen storage alloys.</p>","PeriodicalId":351,"journal":{"name":"Journal of Colloid and Interface Science","volume":"682 ","pages":"1040-1050"},"PeriodicalIF":9.4,"publicationDate":"2024-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142811517","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"ZIF-67 nanocubes assembly-derived CoTe<sub>2</sub> nanoparticles encapsulated hierarchical carbon nanofibers enables efficient lithium storage.","authors":"Wu-Di Zhang, Xiao-Ye Ge, Kang-Kang Zhao, Qiang Zhang, Fu-Hu Cao, Xingyu Guo, Chuan-Ling Zhang","doi":"10.1016/j.jcis.2024.12.040","DOIUrl":"https://doi.org/10.1016/j.jcis.2024.12.040","url":null,"abstract":"<p><p>Tellurides are promising anode materials for lithium-ion batteries (LIBs) because of their high electronic conductivity and energy density. However, the slow kinetics and poor structural stability lead to decreased electrochemical performance. In this work, by utilizing the interface magnetization mechanism and assembly effect, high-performance CoTe<sub>2</sub> nanoparticles encapsulated hierarchical N-doped porous carbon nanofibers were rationally designed and prepared (ES-CoTe<sub>2</sub>@NC) via facile tellurization of one-dimensional (1D) ZIF-67 nanocube assemblies. Benefiting from the synergistic effects of the unique structure and component, the ES-CoTe<sub>2</sub>@NC anode exhibits a high reversible capacity of 1020 mAh/g at 0.1 A/g after 200 cycles, along with excellent long-term cycling stability, retaining a capacity of 780 mAh/g at 1 A g<sup>-1</sup> after 500 cycles. Notably, the ES-CoTe<sub>2</sub>@NC anode retains a remarkable capacity of 502 mAh/g even after 1000 cycles at a high current density of 5 A g<sup>-1</sup>, highlighting its exceptional cycling stability. Besides, the Full cell coupled with LiFePO<sub>4</sub> cathode delivers a high reversible capacity of 151.1 mAh g<sup>-1</sup> at 0.1 A g<sup>-1</sup> with stable cycling performance. The kinetics analysis reveals that the ES-CoTe<sub>2</sub>@NC anode has high pseudocapacitive properties, high electronic conductivity, and fast Li<sup>+</sup> diffusion capability. Moreover, the ex-situ characterization clarifies the conversion reaction mechanism of ES-CoTe<sub>2</sub>@NC. This work provides a facile but effective way to construct high-performance CoTe<sub>2</sub>-based electrodes.</p>","PeriodicalId":351,"journal":{"name":"Journal of Colloid and Interface Science","volume":"682 ","pages":"1028-1039"},"PeriodicalIF":9.4,"publicationDate":"2024-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142811569","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A degradable polyimide aerogel with highly efficient solar-thermal-electric effect for oil absorption, deicing, and power generation.","authors":"Shiwei Chen, Dongfang Gao, Lixia Long, Wenxuan Cui, Chaofeng Zhu, Xue Wang, Bing Li, Yu Chen, Yuanyue Li, Chuanxing Jiang","doi":"10.1016/j.jcis.2024.12.024","DOIUrl":"https://doi.org/10.1016/j.jcis.2024.12.024","url":null,"abstract":"<p><p>Photothermal materials are considered as promising materials because they can convert clean solar energy into thermal and electrical energy. However, developing degradable photothermal materials with highly efficient solar-thermal-electric energy conversion performance remains a huge challenge. Here, a superhydrophobic bio-polyimide/carbon quantum dots aerogel (S-BioPI/CQDs) is synthesized. S-BioPI/CQDs exhibits superhydrophobicity (WCA = 155°) and super lipophilicity (OCA = 0°). Remarkably, S-BioPI/CQDs shows good solar-thermal-electric energy conversion properties. The surface temperature of S-BioPI/CQDs can be up to 80 °C within 68 s under the solar light irradiation of 1 kW m<sup>-2</sup>. S-BioPI/CQDs has large crude oil adsorption capacity (up to 68.8 times as much as its own weight) and deicing under sunlight irradiation. Meanwhile, the output voltage can be up to 706 mV under the solar light irradiation of 5 kW m<sup>-2</sup>. S-BioPI/CQDs can resist the impact of harsh environments, such as high temperatures, dynamic ocean environments, and strong acid environment. More importantly, S-BioPI/CQDs can be degraded completely within only 8 min. This is the first time to achieve the degradation of PI aerogel. This study provides a new and effective method to prepare advanced photothermal materials with degradable performances for the efficient use of solar energy to solve the fossil fuel crisis and protect the environment.</p>","PeriodicalId":351,"journal":{"name":"Journal of Colloid and Interface Science","volume":"682 ","pages":"1006-1016"},"PeriodicalIF":9.4,"publicationDate":"2024-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142805964","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Optical Biosensor for Bacteremia detection from human blood samples at a label-free Liquid Crystal-Aqueous Interface: A Rapid and Point-of-Care approach.","authors":"Sayani Das, Partha Barman, Ranadhir Chakraborty, Anuj Upadhyay, Archna Sagdeo, Przemysław Kula, Malay Kumar Das, Susanta Sinha Roy","doi":"10.1016/j.jcis.2024.12.030","DOIUrl":"https://doi.org/10.1016/j.jcis.2024.12.030","url":null,"abstract":"<p><p>Detection of bacteremia requires recognizing bloodstream bacteria. Early identification of bacteremia is imperative for treatment and prevents the escalation to systemic infections like septicaemia. This paper introduces a novel, label-free biosensor based on liquid crystals (LCs), designed to offer rapid and reliable optical detection of blood pathogens without using traditional PCR methods. The biosensor utilizes 16S rRNA, a key structural component of the bacterial genome, as a molecular recognition probe. For accurate detection of target DNA, a nematic LC is positioned within a transmission electron microscopy (TEM) grid cell on a DMOAP-coated glass surface and treated with a cationic surfactant, cetyl trimethyl ammonium bromide (CTAB), to facilitate probe adhesion at the LC-aqueous interface. Initially, the CTAB-coated LC displays a homeotropic orientation, but it shifts to a planar/tilted orientation when the primer is added. Upon exposure to the target DNA, the LC returns to its homeotropic configuration, which can be observed using a polarizing optical microscope (POM) fitted with crossed polarizers. An optimal primer adsorption density of 100 nM allows detection of target DNA at concentrations as low as 0.02 nM. The biosensor has been verified for real-time, point-of-care utility by successfully detecting the genomic DNA of the bacterium E. coli cultured in human blood. The operational mechanism of this biosensor has also been confirmed using Circular Dichroism and Synchrotron X-ray Solution Scattering Measurements. Due to its high sensitivity and label-free nature, this biosensor provides a faster, more practical and user-friendly alternative to traditional pathogen detection methods from blood samples of bacteremia patients.</p>","PeriodicalId":351,"journal":{"name":"Journal of Colloid and Interface Science","volume":"683 Pt 1","pages":"79-89"},"PeriodicalIF":9.4,"publicationDate":"2024-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142821635","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Caiyun Li, Hongrui Yang, Hanwen He, Jiabei Yu, Jin Wang, Sen Zhang, Chao Deng
{"title":"Simultaneous modulation of double-coordination shells at cobalt atomic site towards superior oxygen electrocatalysis.","authors":"Caiyun Li, Hongrui Yang, Hanwen He, Jiabei Yu, Jin Wang, Sen Zhang, Chao Deng","doi":"10.1016/j.jcis.2024.12.001","DOIUrl":"https://doi.org/10.1016/j.jcis.2024.12.001","url":null,"abstract":"<p><p>Engineering the coordination microenvironment surrounding the single atom sites (SA) presents a great opportunity to enhance their catalytic performance. In this work, we report the rational design of the cobalt SA sites with simultaneous modifications to the double coordination shells of the Co atom. In the first coordination shell, a vacancy is introduced to create the asymmetric Co-N<sub>3</sub>-V configuration, where V denotes the vacancy. Meanwhile, phosphorus (P) atoms are doped into the carbon substrate to regulate the local environment of the second shell surrounding the Co site. These simultaneous modifications to the double-shell coordination influence the charge density of the active centers, and ultimately improve their activities. Additionally, the one-dimensional (1D) carbon substrate, that is composed of connected bubbles (BCF), provides a conductive and porous framework that facilitates fast kinetics. Taking these advantages, the Co-N-V/P@BCF catalyst demonstrates exceptional bifunctional oxygen catalytic behavior. Furthermore, the robust mechanical properties of Co-N-V/P@BCF, as evidenced by finite element analysis (FEA), endow the full Zn-air battery (ZAB) with remarkable reliability, flexibility, and stable high-rate long-term performance under diverse operating conditions. Therefore, this work not only offers new insights into regulating the electronic structure of single-atomic sites, but also promotes the development of ZAB for various applications.</p>","PeriodicalId":351,"journal":{"name":"Journal of Colloid and Interface Science","volume":"682 ","pages":"804-813"},"PeriodicalIF":9.4,"publicationDate":"2024-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142790571","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Xichang Wang, Xi Xu, Silin Pu, Yun Huang, Wenhao Ren, Chen Luo, Lei Fu, Jie Xiao, Wenping Zeng, Li Liu, Xing Li, Mingshan Wang, Haijun Cao, Xiaoyan Ma
{"title":"The chiral nematic liquid crystal of hydroxypropyl methylcellulose coated on separator: Break through safety of LIBs with high electrochemical performances.","authors":"Xichang Wang, Xi Xu, Silin Pu, Yun Huang, Wenhao Ren, Chen Luo, Lei Fu, Jie Xiao, Wenping Zeng, Li Liu, Xing Li, Mingshan Wang, Haijun Cao, Xiaoyan Ma","doi":"10.1016/j.jcis.2024.11.181","DOIUrl":"https://doi.org/10.1016/j.jcis.2024.11.181","url":null,"abstract":"<p><p>The commercial polypropylene (PP) separator of lithium-ion batteries (LIBs) suffers from abominable thermal runaway, which seriously impedes their wide application in electric vehicles, portable electronic devices, energy storage, and other fields. To resolve this obstacle, herein, we for the first time report the phenomenon of hydroxypropyl methylcellulose (HPMC) crystallizing on the PP separator via natural drying to form structural color, which comprehensively breaks through the safety of LIBs. In-situ thermal monitoring indicates that the chiral nematic liquid crystal phase (CLC) with structural color formed by HPMC under natural drying can uniform the temperature distribution during battery operation. The most important achievement, benefiting from the preeminent thermal stability of CLC special structure, is that the pouch cell assembled with this separator exhibits a lower temperature under nail penetration tests with Φ5 mm and Φ8 mm nail, even without any risk of thermal runaway. The superior cycling stability of the pouch cells under various commercial cathode materials indicates the HPMC coating exists stably in commercial energy storage systems. More impressively, we first achieved robust cycling performance of LIBs assembled in an atmospheric environment for more than 1000 cycles, and the milestone discovery will undoubtedly create a new research direction for LIBs.</p>","PeriodicalId":351,"journal":{"name":"Journal of Colloid and Interface Science","volume":"682 ","pages":"784-794"},"PeriodicalIF":9.4,"publicationDate":"2024-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142790584","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}