Journal of Colloid and Interface Science最新文献

筛选
英文 中文
Manipulating the d-band center of bimetallic molybdenum vanadate for high performance aqueous zinc-ion battery. 操纵双金属钒酸钼的 d 波段中心,实现高性能水性锌离子电池。
IF 9.4 1区 化学
Journal of Colloid and Interface Science Pub Date : 2025-02-01 Epub Date: 2024-10-16 DOI: 10.1016/j.jcis.2024.10.073
Youcun Bai, Zhixian Wu, Qidong Lv, Wei Sun, Wenhao Liang, Xin Xia, Heng Zhang, Chang Ming Li
{"title":"Manipulating the d-band center of bimetallic molybdenum vanadate for high performance aqueous zinc-ion battery.","authors":"Youcun Bai, Zhixian Wu, Qidong Lv, Wei Sun, Wenhao Liang, Xin Xia, Heng Zhang, Chang Ming Li","doi":"10.1016/j.jcis.2024.10.073","DOIUrl":"10.1016/j.jcis.2024.10.073","url":null,"abstract":"<p><p>Vanadium-based oxides have good application prospects in aqueous zinc ion batteries (AZIBs) due to their structures suitable for zinc ion extraction and intercalation. However, their poor conductivity limits their further development. The d-band center plays a key role in promoting adsorption of ions, which promotes the development of electrode materials. Here, a series of MoV<sub>2</sub>O<sub>8</sub> compounds with oxygen defect (O<sub>d</sub>-MoV<sub>2</sub>O<sub>8</sub>) were synthesized by a simple hydrothermal process and a subsequent vacuum calcination process through strict control of the deoxidation time. Theoretical calculations reveal that the abundant oxygen vacancies in MoV<sub>2</sub>O<sub>8</sub> effectively regulate the d-band center of the zinc ion adsorption site. This precise control of the d-band center enhances the zinc ion adsorption energy of MoV<sub>2</sub>O<sub>8</sub>, lowers the migration energy barrier for zinc ions, and ultimately significantly boosts zinc storage performance. The specific capacity is as high as 282.4 mAh/g after 100 cycles at 0.1 A/g, and it also shows excellent performance and outstanding cycle life. In addition, the maximum energy density of O<sub>d</sub>-MVO-0.5 (MoV<sub>2</sub>O<sub>8</sub> sample deoxidized for 0.5 h) is 343.3 Wh kg<sup>-1</sup>. Importantly, the mechanism of Zn<sup>2+</sup> storage in O<sub>d</sub>-MoV<sub>2</sub>O<sub>8</sub> was revealed by the combination of in situ and ex situ characterization techniques.</p>","PeriodicalId":351,"journal":{"name":"Journal of Colloid and Interface Science","volume":"679 Pt A","pages":"1311-1319"},"PeriodicalIF":9.4,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142454815","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Coupling multifunctional ZnCoAl-layered double hydroxides on Ti-Fe2O3 photoanode for efficient photoelectrochemical water oxidation. 在 Ti-Fe2O3 光阳极上耦合多功能 ZnCoAl 层状双氢氧化物,实现高效光电化学水氧化。
IF 9.4 1区 化学
Journal of Colloid and Interface Science Pub Date : 2025-02-01 Epub Date: 2024-10-10 DOI: 10.1016/j.jcis.2024.10.036
Haiyang Cheng, Kaikai Ba, Yunan Liu, Yanhong Lin, Dejun Wang, Tengfeng Xie
{"title":"Coupling multifunctional ZnCoAl-layered double hydroxides on Ti-Fe<sub>2</sub>O<sub>3</sub> photoanode for efficient photoelectrochemical water oxidation.","authors":"Haiyang Cheng, Kaikai Ba, Yunan Liu, Yanhong Lin, Dejun Wang, Tengfeng Xie","doi":"10.1016/j.jcis.2024.10.036","DOIUrl":"10.1016/j.jcis.2024.10.036","url":null,"abstract":"<p><p>The efficiency of photoelectrochemical (PEC) water splitting is hindered by the slow kinetics of the oxygen evolution reaction (OER). This study developed a composite photoanode for water oxidation by incorporating ternary LDHs (ZnCoAl-LDH) onto Ti-Fe<sub>2</sub>O<sub>3</sub> as a cocatalyst. The ZnCoAl-LDH/Ti-Fe<sub>2</sub>O<sub>3</sub> photoanode achieved a photocurrent density of 3.51 mA/cm<sup>2</sup> at 1.23 V vs. RHE, which is 9.8 times higher than that of bare Ti-Fe<sub>2</sub>O<sub>3</sub>. Through a series of characterizations, the synergistic effects among the three metals were revealed. Furthermore, the addition of Zn can induce the formation of more high-valent Co, increasing the conductivity of CoAl-LDH and significantly reducing the surface charge transfer resistance. These advantages significantly enhance the injection efficiency of ZnCoAl-LDH/Ti-Fe<sub>2</sub>O<sub>3</sub> (82 %), thereby accelerating the OER kinetics of Ti-Fe<sub>2</sub>O<sub>3</sub>. Our work introduces new approaches for selecting photoelectrochemical cocatalysts and designing high-performance photoanodes for water splitting.</p>","PeriodicalId":351,"journal":{"name":"Journal of Colloid and Interface Science","volume":"679 Pt A","pages":"1117-1126"},"PeriodicalIF":9.4,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142454804","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Zincophilic host with lattice plane matching enables stable zinc anodes in aqueous zinc-ion batteries. 晶格面匹配的亲锌宿主可在锌离子水电池中实现稳定的锌阳极。
IF 9.4 1区 化学
Journal of Colloid and Interface Science Pub Date : 2025-02-01 Epub Date: 2024-10-14 DOI: 10.1016/j.jcis.2024.10.062
Zhu Liu, Pengshu Yi, Longli Ma, Yuhang Yuan, Yuan Wang, Chuming Ye, Mingxin Ye, Jianfeng Shen
{"title":"Zincophilic host with lattice plane matching enables stable zinc anodes in aqueous zinc-ion batteries.","authors":"Zhu Liu, Pengshu Yi, Longli Ma, Yuhang Yuan, Yuan Wang, Chuming Ye, Mingxin Ye, Jianfeng Shen","doi":"10.1016/j.jcis.2024.10.062","DOIUrl":"10.1016/j.jcis.2024.10.062","url":null,"abstract":"<p><p>The practical application of aqueous zinc-ion batteries (AZBs) as attractive energy storage devices is severely hampered by the uncontrollable zinc dendrite growth on the metal anode. Here, a lightweight and flexible free-standing membrane of MXene/Ag nanowires (AgNWs) was synthesized via vacuum filtration to support the zinc anode. The 3D cross-linked network structure provides ample space for densely packed zinc electrodeposition. Zincophilic AgNWs that exhibit a low lattice plane mismatch with zinc lower the nucleation barrier for zinc, inducing uniform nucleation and lateral growth of zinc on the substrate. In addition, the 3D network framework effectively reduces the local current density and area capacity of the anode, creating a uniform electric field that is not conducive to zinc dendrite formation. Consequently, the highly reversible Zn@MXene/AgNWs composite anode exhibits long cycle stability of 1000 h at 2.0 mA cm<sup>-2</sup>, 1.0 mAh cm<sup>-2</sup> in the symmetrical battery. The full battery assembled with a sodium vanadate (NVO) cathode demonstrates excellent rate performance and long cycle life (2000 cycles at 5.0 A/g). The design of zincophilic hosts with high lattice plane matching provides a promising strategy for realizing dendrite-free zinc anodes for AZBs.</p>","PeriodicalId":351,"journal":{"name":"Journal of Colloid and Interface Science","volume":"679 Pt A","pages":"1231-1241"},"PeriodicalIF":9.4,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142454822","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Tip effect of NiCo-LDH with low crystallinity for enhanced energy storage performance of yarn-shaped supercapacitors. 低结晶度 NiCo-LDH 的尖端效应可提高纱形超级电容器的储能性能。
IF 9.4 1区 化学
Journal of Colloid and Interface Science Pub Date : 2025-02-01 Epub Date: 2024-10-15 DOI: 10.1016/j.jcis.2024.10.064
Yongtao Yu, Yongping Liao, Jiangning Fan, Yuanlong Ding, Yanzhi Fan, Jun Cao, Xinghai Zhou, Ying Wang, Jun Yan, Hong Li, Dongyan Li, Jiaqing Wu
{"title":"Tip effect of NiCo-LDH with low crystallinity for enhanced energy storage performance of yarn-shaped supercapacitors.","authors":"Yongtao Yu, Yongping Liao, Jiangning Fan, Yuanlong Ding, Yanzhi Fan, Jun Cao, Xinghai Zhou, Ying Wang, Jun Yan, Hong Li, Dongyan Li, Jiaqing Wu","doi":"10.1016/j.jcis.2024.10.064","DOIUrl":"10.1016/j.jcis.2024.10.064","url":null,"abstract":"<p><p>Layered double hydroxides (LDHs) are considered promising materials for supercapacitor applications. However, the development of yarn-shaped supercapacitors (YSCs) with high electrochemical performance utilizing LDHs remains challenging. In this study, the NiCo-LDHs with various morphologies (nano-needles, nano-sheets, needle-sheet composites, and nano-flowers) were grown on carbon nanotubes (CNTs)-functionalized cotton yarn via a co-precipitation technique for YSC applications. Among these, the yarn incorporating nano-needle NiCo-LDHs exhibited reduced crystallinity yet demonstrated a superior areal capacitance compared to other morphologies, following a diffusion-controlled process. Finite element simulations were subsequently conducted to investigate this phenomenon, revealing that the lower-crystallinity nano-needle NiCo-LDHs accumulated a greater charge at their tips, thereby enhancing redox reactions and achieving higher energy storage capacitance. Subsequently, the yarns with nano-needle NiCo-LDHs were assembled into flexible quasi-solid-state symmetric YSCs, achieving a peak areal capacitance of 124.27 mF cm<sup>-2</sup> and an exceptionally high energy density of 39.4 μWh cm<sup>-2</sup> at a current density of 0.2 mA cm<sup>-2</sup>. Furthermore, our YSCs can be scaled up through serial or parallel connections and integrated into fabrics, making them suitable for wearable energy storage applications. This work provides an efficient method for fabricating high-performance YSCs and demonstrates significant potential for wearable energy storage devices.</p>","PeriodicalId":351,"journal":{"name":"Journal of Colloid and Interface Science","volume":"679 Pt A","pages":"1242-1252"},"PeriodicalIF":9.4,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142454820","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A novel strategy to improve the electrochemical properties of in-situ polymerized 1,3-dioxolane electrolyte in lithium metal batteries. 改善锂金属电池中原位聚合 1,3-dioxolane 电解质电化学特性的新策略。
IF 9.4 1区 化学
Journal of Colloid and Interface Science Pub Date : 2025-02-01 Epub Date: 2024-10-12 DOI: 10.1016/j.jcis.2024.10.024
Kang Xi, Yongdong Wang, Chengzhe Li, Yue Lei, Xin Xu, Lai Wei, Yunfang Gao
{"title":"A novel strategy to improve the electrochemical properties of in-situ polymerized 1,3-dioxolane electrolyte in lithium metal batteries.","authors":"Kang Xi, Yongdong Wang, Chengzhe Li, Yue Lei, Xin Xu, Lai Wei, Yunfang Gao","doi":"10.1016/j.jcis.2024.10.024","DOIUrl":"10.1016/j.jcis.2024.10.024","url":null,"abstract":"<p><p>The application of solid-state electrolytes (SSEs) is anticipated to enhance the safety performance of lithium metal batteries (LMBs). However, the progress of SSEs has been hindered by the unstable electrode-electrolyte interfaces (EEIs). In this study, in-situ polymerization of 1,3-dioxolane (DOL) is employed for the preparation of SSEs, with the addition of tributyl borate (TBB) to establish stable EEIs, particularly under high-voltage conditions. On one hand, the addition of TBB promotes the dissociation of lithium salts and increases the concentration of free Li<sup>+</sup>, resulting in an increase in room temperature ionic conductivity to 1.13 × 10<sup>-4</sup> S cm<sup>-1</sup> and an improvement in the Li<sup>+</sup> transference number to 0.69 for the prepared poly-DOL electrolytes (PDE-TBB). Benefiting from the enhanced Li<sup>+</sup> transport, the Li/PDE-TBB/Li symmetric cell exhibits a cycle life exceeding 1,000 h with a low polarization voltage as low as 12 mV, and the Li/PDE-TBB/LiFePO<sub>4</sub> cell demonstrates exceptional cyclic stability over 800 cycles at 1C, with a coulombic efficiency exceeding 99.8 % and a capacity retention of 89.6 %. On the other hand, PDE-TBB exhibits improved stability under high-voltage conditions and the capacity to establish robust boron-rich cathode electrolyte interphase (CEI) on the LiNi<sub>0.8</sub>Co<sub>0.1</sub>Mn<sub>0.1</sub>O<sub>2</sub> (NCM811) surface, thereby enhancing the structural stability of cathode materials and ensuring exceptional cycling performance of Li/PDE-TBB/NCM811cell. This work presents a promising strategy for developing novel ether-based SSEs suitable for high-voltage lithium metal batteries.</p>","PeriodicalId":351,"journal":{"name":"Journal of Colloid and Interface Science","volume":"679 Pt A","pages":"1277-1287"},"PeriodicalIF":9.4,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142454801","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
In-situ construction of high-performance artificial solid electrolyte interface layer on anode surfaces for anode-free lithium metal batteries. 在阳极表面原位构建高性能人工固体电解质界面层,用于无阳极锂金属电池。
IF 9.4 1区 化学
Journal of Colloid and Interface Science Pub Date : 2025-02-01 Epub Date: 2024-10-09 DOI: 10.1016/j.jcis.2024.10.023
Xiao Liu, Jingjing Liu, Huijuan Zhao, Chang Dong, Fengquan Liu, Lin Li
{"title":"In-situ construction of high-performance artificial solid electrolyte interface layer on anode surfaces for anode-free lithium metal batteries.","authors":"Xiao Liu, Jingjing Liu, Huijuan Zhao, Chang Dong, Fengquan Liu, Lin Li","doi":"10.1016/j.jcis.2024.10.023","DOIUrl":"10.1016/j.jcis.2024.10.023","url":null,"abstract":"<p><p>The electrochemical performance of lithium metal batteries (LMBs) was hampered by the uncontrolled growth of lithium (Li) dendrites. To address this issue, the extensive application of artificial solid electrolyte interphase (SEI) coatings on anode surfaces emerged as an effective solution. Electrospinning, as an innovative technique for fabricating artificial SEI layers on the surface of copper (Cu) foil, effectively mitigated Li volume strain during cycling. In this study, an electrospun organic-inorganic composite nanofiber membrane was in-situ fabricated on Cu foil, serving as an artificial SEI layer (CuWs) for anode-free LMBs (AF-LMBs) to enhance battery performance. Lithiophilic polyvinylpyrrolidone was used as the polymer matrix, and Cu nitrate served as the inorganic functional particles capable of in-situ redox reactions. The CuWs with their three-dimensional (3D) network structure accommodated electrode volume changes and suppressed Li dendrite growth during Li deposition and stripping. Additionally, CuWs facilitated the in-situ generation of Li nitrate (LiNO<sub>3</sub>), which helped stabilize SEI layer and enhance Li utilization. The release sites of LiNO<sub>3</sub> on the nanofibers enabled the in-situ reduction of metallic Cu, providing nucleation sites for Li deposition and forming the 3D ion-electron hybrid conductive networks. This CuWs layer reduced interfacial resistance and nucleation barriers, promoting uniform Li<sup>+</sup> distribution on the anode surface. Li-Cu cells incorporating CuWs exhibited remarkable cycling stability, enduring over 460 cycles at 1.0 mA cm<sup>-2</sup> and 1.0 mAh cm<sup>-2</sup> with an average Coulombic efficiency of over 98.6 %. In Li-poor cells, the LFP|PE|CuWs achieved stable cycling for more than 30 cycles at 1.0 C, with a capacity retention rate of 92.0 %. These findings demonstrated that the CuWs membrane significantly enhanced the electrochemical performance of Li-poor cells and provided a novel artificial SEI protective strategy for advanced AF-LMBs with high energy density.</p>","PeriodicalId":351,"journal":{"name":"Journal of Colloid and Interface Science","volume":"679 Pt A","pages":"1106-1116"},"PeriodicalIF":9.4,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142454814","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Corrigendum to "Non-carbonization annealing toward regulation of cobalt-based organic-inorganic hybrids as advanced electrocatalysts for water splitting" [J. Colloid Interface Sci. 682 (2025) 671-679].
IF 9.4 1区 化学
Journal of Colloid and Interface Science Pub Date : 2025-01-18 DOI: 10.1016/j.jcis.2025.01.130
Ruiyu Pan, Shanjing Liu, Xingmei Guo, Zhongyao Duan, Qianqian Fan, Yuanjun Liu, Xiangjun Zheng, Chunsheng Li, Qinghong Kong, Junhao Zhang
{"title":"Corrigendum to \"Non-carbonization annealing toward regulation of cobalt-based organic-inorganic hybrids as advanced electrocatalysts for water splitting\" [J. Colloid Interface Sci. 682 (2025) 671-679].","authors":"Ruiyu Pan, Shanjing Liu, Xingmei Guo, Zhongyao Duan, Qianqian Fan, Yuanjun Liu, Xiangjun Zheng, Chunsheng Li, Qinghong Kong, Junhao Zhang","doi":"10.1016/j.jcis.2025.01.130","DOIUrl":"https://doi.org/10.1016/j.jcis.2025.01.130","url":null,"abstract":"","PeriodicalId":351,"journal":{"name":"Journal of Colloid and Interface Science","volume":"685 ","pages":"63-64"},"PeriodicalIF":9.4,"publicationDate":"2025-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142997881","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Viscous fingering and interface splitting instabilities in air-water-oil systems.
IF 9.4 1区 化学
Journal of Colloid and Interface Science Pub Date : 2025-01-17 DOI: 10.1016/j.jcis.2025.01.096
Young-Hoon Lee, Jingyi Wang, Ranjani Kannaiyan, Ian D Gates
{"title":"Viscous fingering and interface splitting instabilities in air-water-oil systems.","authors":"Young-Hoon Lee, Jingyi Wang, Ranjani Kannaiyan, Ian D Gates","doi":"10.1016/j.jcis.2025.01.096","DOIUrl":"https://doi.org/10.1016/j.jcis.2025.01.096","url":null,"abstract":"<p><strong>Hypothesis: </strong>Viscous fingering instabilities of air displacing water displacing mineral oil is controlled by the air injection rate. Given the lower viscosity of the water, air would tend to finger through the water and then after it reaches the oil, proceed to finger through the oil.</p><p><strong>Experiments: </strong>In a radial Hele-Shaw cell, experiments were conducted on air injection into mineral oil and air injection into a volume of water at the center of the cell which in turn is surrounded by mineral oil. The images of the fingers are analyzed to quantify the fingering patterns to compare the behaviours between the two and three phase systems.</p><p><strong>Findings: </strong>Significantly different fingering patterns occur between the two and three phase systems. When air fingers penetrate the water layer and reach the oil, the air propagates along the interface between water and oil in an interface splitting instability mode resulting in development of more intricate fingering patterns. It was also observed that air fingers penetrate within water fingers that penetrate the oil. In addition, the fingertip moves faster with the presence of water exhibiting a discontinuity of the fingertip velocities across the water and mineral oil regions.</p>","PeriodicalId":351,"journal":{"name":"Journal of Colloid and Interface Science","volume":"685 ","pages":"129-139"},"PeriodicalIF":9.4,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142997628","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Modulating the structure of Cu in Cu2X/CNTs hollow tetrakaidecahedron to enhance high-efficiency H2O2 production.
IF 9.4 1区 化学
Journal of Colloid and Interface Science Pub Date : 2025-01-16 DOI: 10.1016/j.jcis.2025.01.124
Aiai Zhang, Zheng Liu, Chunli Li, Fengzhen Zhang, Jinfang Wu, Wenpo Li
{"title":"Modulating the structure of Cu in Cu<sub>2</sub>X/CNTs hollow tetrakaidecahedron to enhance high-efficiency H<sub>2</sub>O<sub>2</sub> production.","authors":"Aiai Zhang, Zheng Liu, Chunli Li, Fengzhen Zhang, Jinfang Wu, Wenpo Li","doi":"10.1016/j.jcis.2025.01.124","DOIUrl":"https://doi.org/10.1016/j.jcis.2025.01.124","url":null,"abstract":"<p><p>Regulation of active sites of electrocatalysts is critical in adjusting electronic structure and catalytic selectivity towards oxygen reduction reaction (ORR) to hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>). Herein, the Cu<sub>2</sub>X/CNTs (X = Se, SSe, S) hollow tetrakaidecahedron catalysts were synthesized to facilitate the electrocatalytic reduction of O<sub>2</sub> to H<sub>2</sub>O<sub>2</sub>. The introduction of S resulted in a shift from four-electron pathway on Cu<sub>2</sub>Se/CNTs to two-electron process on Cu<sub>2</sub>S/CNTs, ultimately leading to an enhancement in H<sub>2</sub>O<sub>2</sub> productivity. Importantly, the addition of extra S species can modulate the chemical environment of active sites, and electrochemical tests demonstrate that the Cu<sub>2</sub>S/CNTs catalyst exhibits an enhanced selectivity (over 91 %), production rate (360 mmol g<sub>cat</sub><sup>-1</sup> h<sup>-1</sup>), and durability for H<sub>2</sub>O<sub>2</sub> undergoing a two-electron process by an H-type electrolytic cell. The in-situ Raman spectroscopy result confirms that the structural stability of Cu<sub>2</sub>S/CNTs during the reaction, and the accumulation of H<sub>2</sub>O<sub>2</sub> increased with the extension of reaction time. Various experimental results and density functional theory (DFT) reveal that the S atoms can optimize the adsorption strength of the active sites to reaction intermediates, thereby creating an appropriate energy barrier for the formation of the determinant intermediate OOH* in H<sub>2</sub>O<sub>2</sub> production, while maintain a high energy barrier for OO bond breaking of OOH* towards H<sub>2</sub>O formation. This study proves insights into strategies for controlling H<sub>2</sub>O<sub>2</sub> production and guiding the optimization of catalysts for H<sub>2</sub>O<sub>2</sub> electrosynthesis.</p>","PeriodicalId":351,"journal":{"name":"Journal of Colloid and Interface Science","volume":"685 ","pages":"140-152"},"PeriodicalIF":9.4,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142997885","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mechanism of solid electrolyte interphase film formation using ethylene carbonate-based local high concentration electrolyte in sodium-ion batteries.
IF 9.4 1区 化学
Journal of Colloid and Interface Science Pub Date : 2025-01-16 DOI: 10.1016/j.jcis.2025.01.110
Jiaqi Ding, Longkai Zhang, Xinyu Li, Wenjuan Qiu, Qilu Zhu, Guojun Luo, Xin Xiao, Junmin Nan, Xiaoxi Zuo
{"title":"Mechanism of solid electrolyte interphase film formation using ethylene carbonate-based local high concentration electrolyte in sodium-ion batteries.","authors":"Jiaqi Ding, Longkai Zhang, Xinyu Li, Wenjuan Qiu, Qilu Zhu, Guojun Luo, Xin Xiao, Junmin Nan, Xiaoxi Zuo","doi":"10.1016/j.jcis.2025.01.110","DOIUrl":"https://doi.org/10.1016/j.jcis.2025.01.110","url":null,"abstract":"<p><p>Sodium-ion batteries (SIBs) have the advantages of abundant resources and low cost, making them potential candidates for the next-generation large-scale energy storage technology. However, the capacity fade during cycling used in sodium-ion batteries is a major challenge. The rational design of the electrolyte is one of the ways to solve these problems. In this work, 1,1,2,2-tetrafluoroethyl-2,2,3,3-tetrafluoropropyl ether (HFE) is introduced into a sodium hexafluorophosphate (NaPF<sub>6</sub>)/ethylene carbonate (EC) electrolyte to design a locally high concentration electrolyte (LHCE), which helps stabilize the solid electrolyte interphase (SEI) in sodium-ion batteries (SIBs). By modulating the solvation structure of the electrolyte, a NaF-rich SEI is formed on the surfaces of electrodes. With sodium iron phosphate (NFPO) as the cathode, the cell maintained a capacity retention rate of 91.5 % after 300 cycles at 0.5C. In addition, a sodium nickel iron manganese oxide (NFMO)||Hard carbon (HC) pouch cell achieves a capacity retention of 84.2 % after 500 cycles at 1C. This study provides a new perspective for the understanding and design of locally high concentration electrolytes for sodium-ion batteries.</p>","PeriodicalId":351,"journal":{"name":"Journal of Colloid and Interface Science","volume":"685 ","pages":"153-164"},"PeriodicalIF":9.4,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142997884","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信