Density distribution within the water contact layer determines slippage: Beyond surface wettability

IF 9.4 1区 化学 Q1 CHEMISTRY, PHYSICAL
Shiyu Lv , Qingwei Gao , Qian Sun , Shuangliang Zhao
{"title":"Density distribution within the water contact layer determines slippage: Beyond surface wettability","authors":"Shiyu Lv ,&nbsp;Qingwei Gao ,&nbsp;Qian Sun ,&nbsp;Shuangliang Zhao","doi":"10.1016/j.jcis.2025.138371","DOIUrl":null,"url":null,"abstract":"<div><h3>Hypothesis</h3><div>Both hydrophobic and hydrophilic surfaces have been shown to promote solid-liquid boundary slippage, which leading to a controversy regarding the role of surface wettability in liquid slippage. We hypothesize that liquid slippage is determined by a more fundamental physical mechanism beyond surface wettability effect.</div></div><div><h3>Simulations</h3><div>Through equilibrium (EMD) and non-equilibrium molecular dynamics (NEMD) simulations, we investigate the effect of solid-liquid Lennard-Jones (L-J) interactions, solid lattice constants, surface charges, and roughness on water wetting and slippage on solid surfaces.</div></div><div><h3>Findings</h3><div><em>We</em> demonstrate that the density distribution within the water contact layer on solid surfaces determines water slippage, beyond surface wettability. The new concept of <em>Roughness of Contact Density</em> (<em>RCD</em>) is proposed to quantitatively describe this effect and revealing a power-law relationship between <em>RCD</em> and slip length. The slip length increases as the <em>RCD</em> decreases, with significant slippage and a slip length of 10 nm occurring when the <em>RCD</em> equals 0.2. Our work not only clarifies the persistent ambiguous role of surface wettability in liquid slippage but also provides a new physical mechanism for liquid slippage.</div></div>","PeriodicalId":351,"journal":{"name":"Journal of Colloid and Interface Science","volume":"700 ","pages":"Article 138371"},"PeriodicalIF":9.4000,"publicationDate":"2025-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Colloid and Interface Science","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S002197972501762X","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Hypothesis

Both hydrophobic and hydrophilic surfaces have been shown to promote solid-liquid boundary slippage, which leading to a controversy regarding the role of surface wettability in liquid slippage. We hypothesize that liquid slippage is determined by a more fundamental physical mechanism beyond surface wettability effect.

Simulations

Through equilibrium (EMD) and non-equilibrium molecular dynamics (NEMD) simulations, we investigate the effect of solid-liquid Lennard-Jones (L-J) interactions, solid lattice constants, surface charges, and roughness on water wetting and slippage on solid surfaces.

Findings

We demonstrate that the density distribution within the water contact layer on solid surfaces determines water slippage, beyond surface wettability. The new concept of Roughness of Contact Density (RCD) is proposed to quantitatively describe this effect and revealing a power-law relationship between RCD and slip length. The slip length increases as the RCD decreases, with significant slippage and a slip length of 10 nm occurring when the RCD equals 0.2. Our work not only clarifies the persistent ambiguous role of surface wettability in liquid slippage but also provides a new physical mechanism for liquid slippage.

Abstract Image

水接触层内的密度分布决定了滑移:超出表面润湿性
疏水和亲水表面都被证明会促进固液边界滑移,这导致了关于表面润湿性在液体滑移中的作用的争论。我们假设液体滑移是由表面润湿性效应以外的更基本的物理机制决定的。通过平衡(EMD)和非平衡分子动力学(NEMD)模拟,我们研究了固体-液体Lennard-Jones (L-J)相互作用、固体晶格常数、表面电荷和粗糙度对固体表面水润湿和滑动的影响。研究结果表明,固体表面上的水接触层内的密度分布决定了表面润湿性以外的水滑移。提出了接触密度粗糙度(RCD)的新概念来定量描述这种效应,并揭示了RCD与滑移长度之间的幂律关系。滑移长度随RCD的减小而增大,当RCD = 0.2时滑移明显,滑移长度为10 nm。我们的工作不仅澄清了表面润湿性在液体滑移中持续存在的模糊作用,而且为液体滑移提供了一种新的物理机制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
16.10
自引率
7.10%
发文量
2568
审稿时长
2 months
期刊介绍: The Journal of Colloid and Interface Science publishes original research findings on the fundamental principles of colloid and interface science, as well as innovative applications in various fields. The criteria for publication include impact, quality, novelty, and originality. Emphasis: The journal emphasizes fundamental scientific innovation within the following categories: A.Colloidal Materials and Nanomaterials B.Soft Colloidal and Self-Assembly Systems C.Adsorption, Catalysis, and Electrochemistry D.Interfacial Processes, Capillarity, and Wetting E.Biomaterials and Nanomedicine F.Energy Conversion and Storage, and Environmental Technologies
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信