Sodium percarbonate fuel-driven magnetic micromotor for rapid detection and efficient removal of tetracycline: Synergistic effect of oxygen vacancy and dissolved oxygen

IF 9.4 1区 化学 Q1 CHEMISTRY, PHYSICAL
Ziwei Lan , Jia Li , Wenning Yang , Lei Zhao , Chunhua Tian , Caihong Zhang , Dickon H.L. Ng
{"title":"Sodium percarbonate fuel-driven magnetic micromotor for rapid detection and efficient removal of tetracycline: Synergistic effect of oxygen vacancy and dissolved oxygen","authors":"Ziwei Lan ,&nbsp;Jia Li ,&nbsp;Wenning Yang ,&nbsp;Lei Zhao ,&nbsp;Chunhua Tian ,&nbsp;Caihong Zhang ,&nbsp;Dickon H.L. Ng","doi":"10.1016/j.jcis.2025.138396","DOIUrl":null,"url":null,"abstract":"<div><div>Micro/nanomotors (MNMs) propelled by hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>) fuel have garnered significant interest in sensitive colorimetric detection and rapid catalytic degradation of organic pollutants. However, their practical applications remain constrained by multiple limitations including toxic high-concentration H<sub>2</sub>O<sub>2</sub> requirements, sluggish Fe<sup>2+</sup>/Fe<sup>3+</sup> redox cycling, and secondary contamination risks from metal ion leaching. Herein, we rationally developed a novel magnetic tubular FeCu@NC/MnO<sub>2</sub> micromotor through multistep fabrication using kapok-derived C microtubes as templates. The micromotor demonstrated remarkable propulsion (126.47 μm s<sup>−1</sup>) under 0.5 M sodium percarbonate (SPC) solution and magnetic guidance, achieving eco-friendly fuel utilization by replacing unstable liquid H<sub>2</sub>O<sub>2</sub> with solid SPC. Benefiting from abundant active sites and oxygen vacancy (O<sub>V</sub>), the micromotor exhibited dual functionality in SPC activation with both sensitive colorimetric detection (LOD = 0.214 μM) and efficient catalytic degradation of tetracycline (TC, 93.73 % removal within 90 min). Quenching experiments and electron paramagnetic resonance (EPR) revealed a free radical and non-radical pathway involving hydroxyl radicals (•OH) and singlet oxygen (<sup>1</sup>O<sub>2</sub>) in TC degradation. More importantly, the O<sub>V</sub>-mediated electron transfer facilitated Cu<sup>+</sup>/Cu<sup>2+</sup>, Fe<sup>2+</sup>/Fe<sup>3+</sup>, and Mn<sup>3+</sup>/Mn<sup>4+</sup> redox cycling, while synergistic O<sub>V</sub> and dissolved oxygen (DO) interactions promoted the generation and conversion of reactive oxygen species (ROS, •OH → O<sub>2</sub><sup>•-</sup> → <sup>1</sup>O<sub>2</sub>). This study provides fundamental insights into O<sub>V</sub>- and DO- mediated ROS generation/transformation mechanisms and offers a paradigm for designing defect-engineered micromotor in environmental remediation.</div></div>","PeriodicalId":351,"journal":{"name":"Journal of Colloid and Interface Science","volume":"700 ","pages":"Article 138396"},"PeriodicalIF":9.4000,"publicationDate":"2025-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Colloid and Interface Science","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021979725017874","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Micro/nanomotors (MNMs) propelled by hydrogen peroxide (H2O2) fuel have garnered significant interest in sensitive colorimetric detection and rapid catalytic degradation of organic pollutants. However, their practical applications remain constrained by multiple limitations including toxic high-concentration H2O2 requirements, sluggish Fe2+/Fe3+ redox cycling, and secondary contamination risks from metal ion leaching. Herein, we rationally developed a novel magnetic tubular FeCu@NC/MnO2 micromotor through multistep fabrication using kapok-derived C microtubes as templates. The micromotor demonstrated remarkable propulsion (126.47 μm s−1) under 0.5 M sodium percarbonate (SPC) solution and magnetic guidance, achieving eco-friendly fuel utilization by replacing unstable liquid H2O2 with solid SPC. Benefiting from abundant active sites and oxygen vacancy (OV), the micromotor exhibited dual functionality in SPC activation with both sensitive colorimetric detection (LOD = 0.214 μM) and efficient catalytic degradation of tetracycline (TC, 93.73 % removal within 90 min). Quenching experiments and electron paramagnetic resonance (EPR) revealed a free radical and non-radical pathway involving hydroxyl radicals (•OH) and singlet oxygen (1O2) in TC degradation. More importantly, the OV-mediated electron transfer facilitated Cu+/Cu2+, Fe2+/Fe3+, and Mn3+/Mn4+ redox cycling, while synergistic OV and dissolved oxygen (DO) interactions promoted the generation and conversion of reactive oxygen species (ROS, •OH → O2•- → 1O2). This study provides fundamental insights into OV- and DO- mediated ROS generation/transformation mechanisms and offers a paradigm for designing defect-engineered micromotor in environmental remediation.

Abstract Image

过碳酸钠燃料驱动磁微马达快速检测和高效去除四环素:氧空位和溶解氧的协同效应
过氧化氢(H2O2)燃料驱动的微纳米马达(MNMs)在有机污染物的灵敏比色检测和快速催化降解方面引起了人们的极大兴趣。然而,它们的实际应用仍然受到多种限制的制约,包括有毒的高浓度H2O2需求,缓慢的Fe2+/Fe3+氧化还原循环以及金属离子浸出的二次污染风险。本文以木棉衍生C微管为模板,通过多步骤加工,合理开发了新型磁管FeCu@NC/MnO2微电机。在0.5 M过碳酸钠(SPC)溶液和磁引导下,微电机表现出显著的推进力(126.47 μ s−1),通过用固体SPC取代不稳定的液态H2O2实现了环保燃料利用。利用丰富的活性位点和氧空缺(OV),微电机在SPC活化方面具有双重功能,既具有灵敏的比色检测(LOD = 0.214 μM),又具有高效的四环素催化降解(TC, 90 min内去除率为93.73%)。淬火实验和电子顺磁共振(EPR)揭示了TC降解的自由基和非自由基途径,包括羟基自由基(•OH)和单线态氧(1O2)。更重要的是,OV介导的电子转移促进了Cu+/Cu2+, Fe2+/Fe3+和Mn3+/Mn4+的氧化还原循环,而OV和溶解氧(DO)的协同相互作用促进了活性氧(ROS,•OH→O2•-→1O2)的生成和转化。该研究为OV-和DO-介导的ROS生成/转化机制提供了基础见解,并为环境修复中缺陷工程微电机的设计提供了范例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
16.10
自引率
7.10%
发文量
2568
审稿时长
2 months
期刊介绍: The Journal of Colloid and Interface Science publishes original research findings on the fundamental principles of colloid and interface science, as well as innovative applications in various fields. The criteria for publication include impact, quality, novelty, and originality. Emphasis: The journal emphasizes fundamental scientific innovation within the following categories: A.Colloidal Materials and Nanomaterials B.Soft Colloidal and Self-Assembly Systems C.Adsorption, Catalysis, and Electrochemistry D.Interfacial Processes, Capillarity, and Wetting E.Biomaterials and Nanomedicine F.Energy Conversion and Storage, and Environmental Technologies
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信